1754’te Joseph Black, bizim şimdi karbondioksit (CO2) dediğimiz şeyi “sabit hava” olarak tarif etmişti. Bir gazı saptayan ilk bilim insanı olmanın yanı sıra, çeşitli “hava” türlerinin, yani gazların varlığını da gösterdi.

On iki yıl sonra Henry Cavendish adlı İngiliz bilim insanı, çinko, demir ve kalay gibi metallerin “asitlerdeki çözeltiyle yanar hava ürettiklerini” Londra’da Kraliyet Derneğine bildirdi. Bu yeni gaza, sıradan ya da “sabit hava” dan farklı olarak kolay yandığı için “yanar hava” dedi. Bugün biz ona hidrojen (H2) diyoruz. Bu, saptanan ikinci gaz ve yalıtılan ilk gaz elementti. Cavendish, çinko-asit karışımının tepkime sırasındaki ağırlık kaybını ölçerek ve çıkan bütün gazları bir torbada toplayıp tartarak – önce gazla dolu sonra boş – bir gaz örneğinin ağırlığını ölçmeye koyuldu. Gazın hacmini bildiği için yoğunluğunu hesaplayabilirdi. Yanar havanın, sıradan havadan 11 kat daha az yoğun olduğunu buldu.

Henry Cavendish deneyleri

Düşük yoğunluklu gazın keşfi, havadan daha hafif olan uçan balonlara yol açtı. 1763’te Fransa’da mucit Jacques Charles ilk hidrojen balonunu uçurdu ve iki haftadan daha kısa bir süre sonra Montgolfier Kardeşler ilk insanlı sıcak-hava balonunu uçurdu.

hidrojen balonu
İlk hidrojen balonunun esin kaynağı Cavendish’ti ve büyük bir kalabalık tarafından alkışlandı. Günümüzde patlayıcı hidrojen yerine helyum kullanır.

Patlayıcı Keşifler

Cavendish kendi gazının ölçülmüş örnekleri ile bilinen hacimlerde havayı şişelerde karıştırdı ve şişelerin kapakların açıp, yakılmış kağıt parçalarıyla karışımları tutuşturdu. Bir birim hidrojen ile dokuz birim hava karışımında yavaş, sakin bir yanma olduğunu; hidrojen miktarının artmasıyla birlikte karışımın artan bir şiddetle patladığını; ama %100 hidrojenin tutuşmadığını gördü. Simyadan kalan ve yanma sırasında ateş benzeri bir elementin (“filojiston”) serbest kaldığını ifade eden köhne bir fikir, Cavendish’in düşüncesini sakatlamaktaydı. Bununla birlikte, deneylerinde ve raporlarında titizdi: “Öyle görünüyor ki, 423 ölçü yanar hava 1000 ölçü sıradan havayı filojistonlaştırmaya neredeyse yeter; patlamadan sonra kalan havanın miktarı, kullanılan sıradan havanın beşte dördünden biraz fazladır. Yanar havanın neredeyse tamamı ile sıradan havanın yaklaşık beşte birinin… yoğunlaşıp camı sıvayan çiğe dönüştüğü… sonucuna varabiliriz.”

Suyu Tanımlamak

Cavendish “filojistonlaştırma” terimini kullanmasına rağmen, çıkan tek yeni malzemenin su olduğunu kanıtlamayı başardı ve iki ölçek yanar havanın bir ölçek oksijenle birleştiği sonucunu çıkardı. Başka bir deyişle, suyun bileşimin H2O olduğunu gösterdi. Bulgularını Joseph Priestley’e bildirmesine rağmen, Cavendish sonuçları yayınlama konusunda o kadar çekingendi ki, arkadaşı İskoç mühendis James Watt 1763’te formülü ilan eden ilk kişi oldu. Bilime birçok katkısı arasında Cavendish havanın bileşimini de “dört parça filojistonlaşmış havayla (nitrojen) karıştırılmış bir parça filojistonsuzlaşmış hava (oksijen)” olarak hesapladı. Bu iki gazın Yer atmosferinin %99’unu oluşturduğunu bugün biliyoruz.

gazlar

Henry Cavendish Kimdir?

18. yüzyıl kimyasının ve fiziğinin en garip ve en parlak öncülerinden biri olan Hanry Cavendish 1731’de Fransa Nice’de doğdu. Her iki dedesi de düktü ve çok zengindi. Cambridge Üniversitesinde okuduktan sonra, Londra’daki evinde tek başına yaşadı ve çalıştı. Çok az konuşan ve kadınlardan utanan bir kişiydi; hizmetçilerine not bırakarak yemek siparişlerini verdiği söyleniyordu.

Henry Cavendish

Cavendish yaklaşık 40 yıl boyunca Kraliyet Derneğinin toplantılarına katıldı ve Royal Institution’da Humphry Davy’e yardım etti. Kimya ve elektrik alanında önemli özgün araştırmalar yaptı, ısının doğasını doğru bir biçimde tarif etti ve Yer’in yoğunluğunu ölçtü ya da halkın dediği şekliyle, “dünyayı tarttı“. 1810’da öldü. 1874’te Cambridge Üniversitesi, yeni fizik laboratuvarına onun adını verdi.

1661 – Robert Boyle bir element tanımlayıp, modern kimyanın temellerini atar.

1754 – Joseph Black, “sabit hava” dediği bir gazı, karbondioksiti saptar.

1772-75 – Joseph Priestley ve (ondan bağımsız) İsveçli Carl Wilhelm Scheele oksijeni yalıtır; onları gaza adını veren Antoine Lavoisier izler. Priestley de nitrik oksidi, azot oksidi ve hidrojen kloridi keşfeder, oksijen soluma ve gazoz yapma deneyleri gerçekleştirir.

1799 – Humphry Davy, azot oksidin ameliyatta bir anestetik olarak yararlı olabildiğini öne sürer.

1844 – Amerikalı dişçi Horace Wells anestezi için ilk kez azot oksit kullanır.

Glasgow Üniversitesinde ve daha sonra Edinburgh’da tıp profesörü olan Joseph Black, kimya dersleri de verdi. Önemli bir araştırmacı bilim insanı olmasına rağmen, vardığı sonuçları nadiren yayımladı, onun yerine derslerinde duyurdu; öğrencileri, yeni bilimin en ön saflarındaydı. Black’in bazı öğrencileri, işlerini yürütmenin maliyetleriyle ilgilenen İskoç viskisi damıtıcılarının oğullarıydı. Yaptıkları tek şey sıvıyı kaynatıp buharı yoğunlaştırmak olduğu halde, viski damıtmanın neden bu kadar pahalı olduğunu soruyorlardı.

Kaynamayla İlgili Yeni Bir Düşünce

1761’de Black ısının sıvılar üzerindeki etkisini araştırdı ve bir çaydanlık su sobanın üzerinde ısıtılırsa, sıcaklığın 100°C’ye ulaşana kadar sürekli arttığını keşfetti. O zaman su kaynamaya başlar, ama suya hala ısı girmesine rağmen sıcaklık artmaz. Black, suyu buhara dönüştürmek – ya da modern terimlerle, moleküllere onları sıvı içinde bir arada tutan bağlardan kurtulmalarına yetecek kadar enerji vermek – için, ısıya ihtiyaç olduğunu anladı. Bu ısı sıcaklığı değiştirmez ve kaybolur gibi görünür bu yüzden Black gizil ısı dedi. Daha doğrusu bu, suyun buharlaşmasının gizil ısısıdır. Bu keşif, termodinamik biliminin – ısıyı, ısının enerjiyle ilişkisini ve mekanik iş yapmak için ısı enerjisini harekete dönüştürmeyi inceleyen bilim – başlangıcı oldu.

su buharı

Suyun alışılmamış ölçüde yüksek bir gizil ısısı vardır; yani sıvı su uzun süre kaynadıktan sonra tamamı gaza dönüşür. Sebze pişirmede buharının bu kadar etkili olmasının, bu kadar etkili olmasının, buharın korkunç bir haşlama gücüne sahip olmasının ve ısıtma sistemlerinde kullanılmasının nedeni budur.

Buzu Eritmek

Suyu buhara dönüştürmek için ısıyı ihtiyaç olduğu gibi, buzu suya dönüştürmek için de ısıya ihtiyaç vardır. Eriyen buzun gizil ısısı, buzun bir içkiyi soğutacağı anlamına gelir. Buzu eritmek ısıyı gerektirir ve bu ısı, buzun içinde yüzdüğü ve soğuttuğu içkiden elde edilir.

Black bütün bunları imbikçilere açıkladı; ama para tasarruf etmelerine yardım edemedi. Buhar motorlarının neden bu kadar verimli olduklarını anlamaya çalışan meslektaşı James Watt’a da açıkladı. Daha sonra Watt, piston ve silindiri soğutmadan buharı yoğunlaştıran ayrı yoğunlaştırıcı düşüncesini ortaya attı. Bu düşünce buhar motorunu çok daha verimli bir makine, Watt’ı da zengin bir kişi haline getirdi.

Burada Black, Glasgow’daki atölyesinde mühendis James Watt’ı ziyaret ederken gösteriliyor. Watt, buharlı aletlerinden birini tanıtıyor.
Joseph Black james watt

Joseph Black Kimdir

Fransa’da Bordeaux’da doğan Joseph Black, Glasgow ve Edinburgh üniversitelerinde tıp okudu; profesörünün laboratuvarında kimyasal deneyler yaptı. 1754’te doktora tezinde Black, tebeşir (kalsiyum karbonat) ısıtılıp sönmemiş kireç (kalsiyum oksit) haline getirilince, genellikle inanıldığı gibi ateşten yakıcı bir ilke almadığını, aksine ağırlık kaybettiğini gösterdi. Black, hiçbir sıvı ya da katı üretilmediği için, bu kaybın bir gaz olması gerektiğini anladı ve tebeşirde sabitlenen bir hava (gaz) olduğu için ona “sabit hava” dedi. Sabit havanın (şimdi karbondioksit olarak bildiğimiz) soluduğumuz gazlar arasında olduğunu da gösterdi.

Joseph Black a

1756’dan itibaren Glasgow’da tıp profesörüyken Black, ısı konusunda dönüm noktası olan araştırmasını yaptı. Ulaştığı sonuçları yayımlamamasına rağmen, öğrencileri bulgularını yaydı. 1776’da Edinburgh’a taşındıktan sonra, araştırma yapmayı bırakıp ders vermeye ve – Sanayi Devrimi hız kazanırken – İskoçya sanayisinde ve tarımında kimya temelli yenilikler konusunda tavsiyelerde bulunmaya odaklandı.

1661 – Robert Boyle gazları yalıtmaya öncülük eder.

1750’ler – Joseph Black kimyasal tepkimelerden önce ve sonra malzemeleri tartar – ilk nicel kimya – ve karbondioksiti keşfeder.

1766 – Henry Cavendish hidrojeni yalıtır.

1774 – Joseph Priestley oksijeni ve diğer gazları yalıtır.

1798 – Amerika doğumlu İngiliz fizikçi Benjamin Thompson, ısının parçacıkların hareketiyle üretildiğini öne sürer.

1845 – James Prescott Joule devinimin ısıya dönüşmesini inceler ve ısının mekanik eşdeğerini ölçüp, verili bir mekanik iş miktarının aynı miktarda ısı ürettiğini söyler.

17. yüzyılda Avrupa’da birçok bilim insanı havanın özelliklerini araştırdı ve onların çalışmaları, İrlanda asıllı İngiliz bilim insanı Robert Boyle’nin bir gazdaki basıncı açıklayan matematiksel yasaları çıkarmasına yol açtı. Bu çalışma, yıldızlar ile gezegenler arasındaki uzayın doğasıyla ilgili daha geniş bir tartışmayla ilişkiliydi. “Atomculara” göre göksel cisimler arasında boş uzay vardı; Kartezyenlere (Fransız filozof Rene Descartes’ı izleyenler) göre ise, parçacıklar arasındaki uzay esir denilen bilenmeyen bir maddeyle doluydu ve bir vakum üretmek olanaksızdı.

Robert Boyle

Barometreler

İtalya’da matematikçi Gasparo Berti, bir emme tulumbanın suyu neden 10 metreden yukarıya çıkaramadığını anlamak için deneyler yaptı. Berti uzun bir boru aldı, bir ucunu kapatıp suyla doldurdu. Sonra ağzını bir su teknesinin içinde koyup ters çevirdi. Tüpteki suyun düzeyi, sütun yaklaşık 10 metre yükselene kadar düştü.

Gasparo Berti

1642’de Berti’nin çalışmalarından haberdar olan yurttaşı Evangelista Torricelli benzer bir aygıt yaptı, ama su yerine cıva kullandı. Cıva sudan 13 kat daha yoğundur; bu yüzden sıvı sütunu yalnızca 76 santimetre kadar yüksekti. Torricelli’nin buna ilişkin açıklaması şöyleydi: çanaktaki cıvanın üzerideki havanın ağırlığı cıvayı aşağı bastırıyordu ve bu, sütunun içindeki cıvanın ağırlığını dengelemekteydi. Tüpün içinde cıvanın üstündeki alanın bir vakum olduğunu söyledi. Bu durum bugün basınçla (belli bir alan üzerideki kuvvet) açıklanır, ama temel düşünce aynıdır. Torricelli ilk cıvalı barometreyi bulmuştu.

Blaise Pascal’ın barometre deneyleri, hava basıncının yükseklikle birlikte nasıl değiştiğini gösterdi. Pascal fiziğin yanı sıra matematiğe de önemli katkılarda bulundu.
Blaise Pascal

Fransız bilim insanı Blaise Pascal, Torricelli’nin barometresinden 1646’da haberdar oldu ve hemen kendi deneylerini yapmaya başladı. Kayınbiraderi Florin Perier’in gerçekleştirdiği bu deneylerden biri, hava basıncının yüksekliğe bağlı olarak değiştiğini gösterecekti. Bir barometre Clermont’ta bir manastırın zeminine yerleştirildi ve gündüzleri bir keşiş tarafından gözlemlendi. Perier başka bir barometreyi, kasabadan yaklaşık bin metre yükseklikteki Puy de Dôme’un tepesine götürdü. Dağın tepesindeki cıva sütunu, manastırın bahçesinde olandan 8 cm daha kısaydı. Dağın üzerideki hava miktarı aşağıdaki vadinin üzerindeki havadan fazla olduğuna göre, gerçekten de havanın ağırlığı su ya da cıva tüplerindeki sıvıyı orada tutmaktaydı. Bu ve diğer çalışmalarda ötürü, modern basınç birimine Pascal adı verilir.

Torricelli

– Bir barometreyi bir dağın başına götürürseniz, barometredeki cıvanın yüksekliği düşer.

– Bunun nedeni, cıvayı aşağıya bastıran havanın yukarıda daha az olmasıdır.

– Bir barometrede alıcının havası boşaltılınca, civanın düzeyi düşer.

– Yani, alıcıdaki hava miktarı ne kadar azsa, basınç da o kadar düşüktür.

Havanın kütlesi küçüldükçe “havanın yayı” da küçülür.

Hava Pompaları

Bir sonraki önemli atılımı, bir kaptan bir miktar havayı boşaltabilen bir pompa yapan Prusyalı bilim insanı Otto von Guericke gerçekleştirdi. En ünlü gösterisini 1654’te yaptı: İki metal yarımküreyi aralarına hava geçirmez bir conta koyup birleştirdi ve aradaki havayı boşalttı. İki takım metal yarımküreleri birbirinden ayıramadı. Hava boşaltılmadan önce, contalı yarımkürelerin içindeki hava basıncı ile dışarıdaki hava basıncı aynıydı. İçeride hava kalmayınca, dışarıdaki havanın basıncı yarımküreleri bir arada tutuyordu.

Otto von Guericke

Robert Boyle, von Guericke’nin deneylerinden 1657’de yayımlanınca haberdar oldu. Boyle kendi deneylerini gerçekleştirmek için, Robert Hooke’u bir hava pompası tasarlayıp yapmakla görevlendirdi. Hooke’un hava pompası, çapı yaklaşık 40 cm olan cam bir “alıcı” (kap), altında piston bulunan bir silindir ve bu ikisinin arasında tıkaçlardan ve vanalardan oluşmaktaydı. Pistonun peş peşe hareketleri alıcıdan daha fazla havayı dışarıya çekiyordu. Donanımın contalarındaki hafif sızıntı nedeniyle, alıcının içinde vakuma yakın bir durum ancak kısa bir süre sürdürülebiliyordu. Yine de makine daha önce yapılanların üzerinden büyük bir ilerlemeydi; bilimsel bir araştırmayı daha da ilerletmede teknolojinin önemini gösteren bir örnekti.

hava pompası

Deneysel Sonuçlar

Boyle, hava pompasıyla çok sayıda farklı deney yaptı ve bunları 1660’ta New Experiments Physico-Mechanicall, Touching the Spring of the Air and its Effects kitabında tarif etti. Kitapta, Galileo gibi ünlü deneycilerin bile çoğu kez “düşünce deneylerinin” sonuçlarını ilan ettiği bir zamanda, açıklanan bütün sonuçların deney ürünü olduğuna işaret etmeye gayret etti.

robert boyle icatları

Boyle’nin birçok deneyi, doğrudan hava basıncıyla bağlantılıydı. Alıcı bir Torricelli barometresini tutacak şekilde değişebiliyordu; tutkalla yerine sabitlenen tüp alıcının tepesinde kadar çıkmaktaydı. Alıcıdaki basınç azaltılınca, cıvanın düzeyi düşmekteydi. Tersinden bir deney de gerekleştirdi ve alıcının içinde basıncın yükselmesiyle cıva seviyesinin de yükseldiğini gördü. Bu, Torricelli’nin ve Pascal’ın daha önceki bulgularını doğruladı.

robert boyle hava pompası

Boyle, hava miktarı azaldıkça alıcıdaki havayı boşaltmanın zorlaştığını belirtti ve alıcının içinde yarı şişirilmiş bir torbanın etrafındaki hava boşaltılınca, hacminin arttığını da gösterdi. Torba bir ateşin önünde tutulduğunda da benzer bir sonuca varılabiliyordu. Bu sonuçlara neden olan hava “yay”ına ilişkin iki olası açıklama yaptı: Her bir hava parçacığı bir yay gibi sıkıştırılabilirdi ve bütün hava kütlesi bir yapağıya benziyordu ya da hava rastgele hareket eden parçacıklardan oluşuyordu.

Bu Kartezyenlerin görüşüne benziyordu; ama Boyle esir düşüncesine katılmadı, “taneciklerin” boş uzayda hareket ettiklerini öne sürdü. Açıklaması, maddenin özelliklerini hareket eden parçacıklar bakımından tarif eden modern kinetik teorisine bariz bir biçimde benzer.

Boyle’nin bazı deneyleri fizyolojikti; hava basıncının azalmasının kuşlar ve fareler üzerindeki etkilerini araştırdı ve havanın akciğere nasıl girip çıktığına kafa yordu.

Boyle Yasası

Boyle yasasına göre, gaz miktarı ve ısı aynı tutulduğu sürece, bir gazın basıncının hacmiyle çarpımı bir sabitti. Başka bir deyişle, bir gazın hacmini azaltırsanız, basıncı artar. Hava yayını üreten, bu artan basınçtır. Bir bisiklet pompasında, pompanın ucunu bir parmağınızla kapatıp pompa kolunu içeri doğru iterseniz etkiyi hissedebilirsiniz.

Bu yasa Boyle adını taşımasına rağmen, ilk kez Boyle değil, Torricelli barometresiyle bir dizi deney yapan ve sonuçlarını 1663’te yayımlayan İngiliz bilim insanları Richard Towneley ve Henry Power önerdi. Boyle kitabın ilk taslağını gördü ve sonuçları Towneley’le tartıştı. O sonuçları deneyle doğruladı ve ilk deneylerine yöneltilen eleştiriye yanıtın bir parçası olarak 1662’de “Bay Towneley’in Hipotezi”ni yayımladı.

Boyle’nin dikkatli deney tekniğinden ötürü ve beklenen sonuçları versin ya da vermesin, deneylerini ve olası hata kaynaklarını eksiksiz rapor ettiği için, gazlarla ilgili çalışması özellikle önemliydi. Bu nedenle birçok kişi onun çalışmalarını genişletmeye çalıştı. Bugün Boyle Yasası, başka bilim insanları tarafından ortaya çıkarılan ve ısı, basınç ya da hacim değişiklikleri altında gerçek gazların davranışına yaklaşan “İdeal Gaz Yasası“nı oluşturan yasalarla birleştirilmektedir. Düşünceleri sonunda kinetik teorisinin gelişmesine de yol açtı.

boyle yasası

Robert Boyle Kimdir?

Robert Boyle İrlanda’da doğdu, Cork Kontlarının 14. çocuğuydu. İngiltere’de Eton College’e gitmeden önce evde özel eğitim aldı ve sonra Avrupa’yı dolaştı. 1643’te babası öldü ve bütün zamanını bilimle ilgilenmeye ayırmasına yetecek kadar para bıraktı. Boyle iki yıllığına tekrar İrlanda’ya taşındı; ama 1654’ten 1668’e kadar çalışmalarını daha kolay yürütebilmek için Oxford’ta yaşadı, ardından Londra’ya taşındı.

robert boyle kimdir

Boyle, bilimsel konuları inceleyen, Londra’da ve Oxford’ta toplanıp düşüncelerini tartışan ve “Görünmez Kolej” denilen grubun üyesiydi. Bu grup 1663’te Kraliyet Derneği oldu ve Boyle ilk konsey üyelerinden biriydi. Bilime ilgisinin yanı sıra Boyle simya deneyleri de yaptı ve farklı insan ırklarının kökeni ve teolojiyle ilgili yazılar da yazdı.

Önemli Eserleri:

1660 – New Experiments Physico-Mechanicall, Touching the Spring of the Air and its Effects

1661 – The Sceptical Chymist (Kuşkucu Kimyager)

Kuşkucu Kimyager

Hava Basıncı Hakkında Tarihsel Gelişmeler

1643 – Evangelista Torricelli bir cıva tüpü kullanarak barometreyi icat eder.

1648 – Blaise Pascal ile kayınbiraderi, hava basıncının yükseklikle birlikte azaldığını gösterir.

1650 – Otto von Guericke hava ve vakum üzerine, ilk kez 1657’de yayımlanan deneyler gerçekleştirir.

1738 – İsviçreli fizikçi Daniel Bernoulli, gazların kinetik teorisini açıklayan Hydrodynamica’yı yayımlar.

Hydrodynamica

1827 – İskoç botanikçi Robert Brown polenlerin sudaki hareketini, rastgele yönlerde hareket eden su molekülleriyle çarpışmanın sonucu olarak açıklar.

İslami Altın Çağ, bilimin ve sanatın büyük gelişme kaydettiği bir dönemdi. 8. yüzyılın ortasında Abbasi Halifeliğinin başkenti Bağdat’ta başladı ve yaklaşık 500 yıl sürdü. Deney yapmanın ve modern bilimsel yöntemin temellerini attı. Aynı dönemde Avrupa’da, bilimsel düşüncesinin dinsel doğmanın sınırlamalarının üstesinden gelmesine daha birkaç yüzyıl vardı.

Aristoteles

Tehlikeli Düşünme

Yüzyıllarca Katolik Kilisenin evren görüşü Aristoteles’in düşüncesine dayandırıldı; buna göre yer, büyün gök cisimlerinin yörüngesel merkezindeydi. Ardından, 1532 civarında, Polonyalı hekim Nicolaus Copernicus karmaşık matematiğiyle yıllarca uğraştıktan sonra, merkezinde Güneş olan sapkın evren modelini tamamladı. Sapkınlığın farkında olan Copernicus, dikkatli davranıp bunun yalnızca matematiksel bir model olduğunu ifade etti ve ölüm eşiğine gelinceye kadar bekleyip ondan sonra yayımladı; ama Copernicus’un modeli hızla taraftar kazandı. Alman astrolog Johannes Kepler, Felemenkli hocası Tycho Brahe’nin gözlemlerini kullanarak Copernicus’un teorisini geliştirdi ve Mars’ın, dolayısıyla diğer gezegenlerin yörüngelerinin elips oluğunu hesapladı. Gelişmiş teleskoplar İtalyan bilgin Galileo Galilei’nin 1610’da Jüpiter’in dört uydusunu saptamasına olanak verdi. Yeni evrenbilimin açıklayıcılık gücü inkar edilemez oluyordu.

Galileo Galilei

Galileo düşen nesnelerin fiziğini araştırarak ve etkili bir zaman sayacı olarak sarkacı tasarlayarak bilimsel deneyin gücünü de gösterdi. Felemenkli Christiaan Huygens, Galileo’nun sarkacını kullanarak 1657’de ilk sarkaçlı saati yaptı. İngiliz filozof Francis Bacon bilimsel yöntemle ilgili düşüncelerini ortaya koyan iki kitap yazarak, deneye, gözleme ve ölçmeye dayanan modern bilimin teorik temelini geliştirdi.

Isaac Newton

Peşinen gürül gürül yeni keşifler geldi. Robert Boyle bir hava pompası kullanıp havanın özelliklerini araştırırken, Huygens ve İngiliz fizikçi Isaac Newton ışığın nasıl yol aldığına ilişkin karşıt teorilerle ortaya çıkıp optik bilimini pekiştirdiler. Danimarkalı astronom Ole Rømer, Jüpiter uydularının tutulma cetvellerinde tutarsızlık fark etti ve bunları kullanarak, ışık hızının yaklaşık bir değerini hesapladı. Rømer’in vatandaşı Piskopos Nicolas Steno eski bilgilerin çoğuna kuşkuyla bakıyordu ve hem anatomi hem jeoloji alanında kendi düşüncelerini geliştirdi. Stratigrafinin (kayaç katmanlarının incelenmesi) ilkelerini belirleyip, jeoloji için yeni bir bilimsel temel kurdu.

Robert Hooke

Mikro Dünyalar

17. yüzyıl boyunca teknolojideki gelişmeler en küçük ölçekte bilimsel keşiflere güç verdi. 1600’lerin başında Felemenkli gözlükçüler ilk mikroskopları geliştirdi; daha sonra Robert Hooke kendi mikroskobunu yaptı ve bulgularının güzel resimlerini çizerek, ilk kez pire gibi küçük böceklerin karışık yapısını açığa vurdu. Olasılıkla Hooke’un resimlerinden esinlenen Felemenkli manifaturacı Antonie van Leeuwenhoek yüzlerce mikroskop yaptı ve su gibi, daha önceden kimsenin bakmayı akıl etmediği yerlerde küçük yaşam formları buldu. Leeuwenhoek, “hayvancık” dediği protist ve bakteri gibi tek hücreli yaşam formlarını keşfetmişti. Bulgularını British Royal Society’ye (İngiliz Kraliyet Derneği) rapor edince, gerçekten böyle şeyler görüp görmediğini doğrulamak için üç rahip gönderildi. Felemenkli mikroskopçı Jan Swammerdam, yumurta, larva, pupa ve erişkinin, Tanrının yarattığı ayrı hayvanlar değil, bir böceğin gelişim evreleri olduğunu gösterdi. Aristoteles’e kadar geri giden eski düşünceler, bu yeni buluşlarla birlikte bir tarafa atıldı. Bu arada İngiliz biyolog John Ray, ilk ciddi sistematik sınıflandırma girişimine işaret eden büyük bir bitki ansiklopedisi hazırladı.

1 Historia Plantarum

Matematiksel Analiz

Aydınlanmanın habercisi olan bu keşifler, modern bilimsel astronomi, kimya, jeoloji, fizik ve biyoloji disiplinlerinin temelini attı. Yüzyılın taçlandırıcı başarısı, Newton’ın hareket ve çekim yasalarını ortaya koyan bilimsel eseri Philosophiae Naturalis Principia Mathematica ile geldi. Newton fiziği iki yüzyıldan fazla bir süre fiziksel dünyanın en iyi tasviri olarak kalacaktı ve Newton ile Gottfried Wilhelm Leibniz’in birbirinden bağımsız geliştirdiği analitik hesaplama teknikleriyle birlikte, gelecekte bilimsel çalışmalara güçlü bir araç sağlayacaktı.

newton

Bilimsel Devrim 1400 – 1700

1543 – Nicolaus Copernicus gün-merkezli bir evrenin ana hatlarını çizen De Revolutionibus Orbium Coelestium‘u (Göksel Kürelerin Devinimleri Üzerine) yayımlar.

De Revolutionibus Orbium Coelestium

1600 – Astronom William Gilbert, manyetizma üzerine bilimsel bir eser olan De Magnete‘yi yayımlar ve yerin mıknatıs olduğunu öne sürer.

1609 – Johannes Kepler, Mars’ın eliptik bir yörüngesi olduğunu öne sürer.

1610 – Galileo Jüpiter’in uydularını gözlemler ve yamaçlardan yuvarladığı toplarla deney yapar.

1620’ler – Francis Bacon bilimsel yöntemin ana hatlarını çizen Novum Organum Scientiarum ve The New Atlantis‘i yayımlar.

1639 – Jeremiah Horrocks Venüs’ün geçişini gözlemler.

1643 – Evangelista Torricelli barometreyi icat eder.

1660’lar – Robert Boyle hava basıncını araştıran New Experiments Physico-Mechanical, Touching the Spring of the Air and its Effects‘i yayımlar.

1665 – Micrographia‘da Robert Hooke dünyayı pirelerin, arıların ve mantarların anatomisiyle tanıştırır.

micrographia

1669 – Nicolas Steno, katıların içindeki katıları (fosiller ve kristaller) yazar.

1669 – Jan Swammerdam, Historia Insectorum Generalis‘te böceklerin evreler halinde nasıl geliştiğini tarif eder.

1670’ler – Antonie van Leeuwenhoek basit mikroskoplarla tek hücreli organizmaları, spermi, hatta bakterileri gözlemler.

1676 – Ole Rømer, Jüpiter’in uydularını kullanarak ışığın belirli bir hızı olduğunu gösterir.

1678 – Christiaan Huygens, daha sonra Isaac Newton’ın parçacık olarak ışık düşüncesiyle karşılaştırılacak ışığın dalga teorisini ilan eder.

1686 – John Ray bitki krallığının ansiklopedisi Historia Plantarum‘u yayımlar.

1687 – Isaac Newton, Philosophiae Naturalis Principia Mathematica‘da kendi hareket yasalarının ana hatlarını çizer.

Philosophiae Naturalis Principia Mathematica

Maddenin doğası, birçok antik Yunan düşünürü ilgilendirmiştir. Sıvı suyu, katı buzu ve gazlı sisi gören Miletoslu Thales, her şeyin sudan yapılmış olması gerektiğine inandı. Aristoteles’e göre “-Bütün şeylerin besini nemdir ve sıcak bile, ıslaktan yaratılmıştır ve ıslakla yaşar.” Thales’ten iki kuşak sonra yazan Anaksimenes dünyanın havadan meydana geldiğini öne sürdü: Hava yoğunlaşınca sis, sonra yağmur ve en sonunda da taş üretir.

Sicilya adasında Akragas’ta [Agrigento] doğan Empedokles daha karmaşık bir teori geliştirdi: Her şey dört kökten – element sözcüğünü kullanmadı – oluşur, yani toprak, hava, ateş ve su. Bu köklerin birleşmesi sıcaklık ve ıslaklık gibi nitelikler üretip toprağı, taşı, bütün bitki ve hayvanları meydana getirir. Başlangıçta dört kök, merkezcil kuvvet sevginin bir arada tuttuğu kusursuz bir küre oluşturmaktaydı. Ama zaman içinde kavga, merkezcil kuvvet, kökleri ayırmaya başladı. Empedokles’e göre sevgi ve kavga evreni şekillendiren iki kuvvettir. Bu dünyada kavga ağır basma eğilimindedir, hayatın bu kadar zor olmasının nedeni budur.

dört kök

Bu görece basit teori, 17. yüzyılda modern kimya gelişene kadar, çok az düzeltmeyle Avrupa düşüncesine – “dört vücut sıvısı”na işaret eden – egemen oldu.

ateş hava su toprak

Empedokles maddenin dört kökünü iki karşıt çift olarak görür: birleşip gördüğümüz her şeyi meydana getiren ateş/su ve hava/toprak.

empedokles

Dört Element Hakkında Tarihçe

MÖ 585 – Thales bütün dünyanın sudan yapıldığını öne sürer.

MÖ 535 – Anaksimenes her şeyin, suyun ve taşın da kaynağı olan havadan oluştuğunu düşünür.

MÖ 400 – Yunan düşünür Demokritos, dünyanın nihayetinde bölünmez küçük parçacıklardan -atomlar- oluştuğunu söyler.

MS 1661 – Sceptical Chymist, eserinde Robert Boyle, bir element tanımı verir.

MS 1808 – John Dalton’ın atom teorisi, her elementin kütleleri farklı atomlara sahip olduğunu ifade eder.

MS 1869 – Dimitri Mendeleyev elementleri ortak özelliklerine göre gruplar halinde düzenleyen bir periyodik tablo önerir.

dört unsur

Bilim, sürekli bir hakikat arayışıdır. Evrenin nasıl çalıştığını keşfetmek için en eski uygarlıklardan beri süre gelen bir mücadeledir. İtici gücünü insanın merakından alan bilim, akıl yürütmeye, gözleme ve deneye dayanmaktadır. Eski yunan filozoflarının en ünlüsü olan Aristoteles bilimsel konularda yazılar yazdı ve sonradan gelen birçok çalışmanın temellerini attı. İyi bir doğa gözlemcisiydi; ama tamamen düşünceye ve muhakemeye dayandı, deney yapmadı. Bu nedenle birçok şeyi yanlış anladı. Örneğin büyük nesnelerin küçük nesnelerden daha hızlı düştüğünü ve bir nesnenin ağırlığı başka bir nesnenin iki katıysa, iki kat daha hızlı düşeceğini öne sürdü. Bu yanlış olmasına rağmen, İtalyan astronom Galileo Galilei 1590’da bu düşünceyi çürütene kadar hiç kimse ondan kuşkulanmadı. Bugün iyi bir bilim insanının ampirik kanıtlara yaslanması gerektiği aleni olabilir, ama her zaman öyle değildi.

Bilimsel Yöntem

Bilimsel süreç için mantıksal bir sistemi, ilk kez 17. yüzyılda İngiliz filozof Francis Bacon öne sürdü. 600 yıl önce Arap bilim insanı İbn-i Heysem’in çalışmalarına dayanan ve çok geçmeden Fransız filozof Rene Descartes tarafından güçlendirilen Bacon’ın bilimsel yöntemi, bilim insanlarının gözlem yapmasını, olup biteni açıklayan bir teori oluşturmasını ve teorinin işe yarayıp yaramadığını görmek için bir deney gerçekleştirmek gerektirir. Doğru gibi görünürse, sonuçlar akran değerlendirmesine gönderilebilir; burada, aynı ya da benzer alanda çalışan insanlar, yanlışları tek tek bulup çıkarmaya, böylece teoriyi çürütmeye ya da sonuçlarının doğru olduğundan emin olmak için deneyi tekrarlamaya davet edilir. Test edilebilir bir hipotez öne sürmek ya da kestirimde bulunmak her zaman yararlıdır. 1682 kuyruklu yıldızını gözlemleyen İngiliz astronom Edmond Halley, 1531 ve 1607’de kayıtlara geçen kuyruklu yıldızlara benzediğini fark etti ve üçüncünün aynı nesle, güneşin yörüngesinde olduğunu öne sürdü. 1758’de geri geleceğini ön gördü ve son anda da olsa haklı çıktı – 25 Aralık günü fark edildi. Bugün o kuyruklu yıldız, Halley Kuyruklu Yıldızı olarak biliniyor. Astronomlar deney yapmadıkları için, kanıtlar ancak gözlemle elde edilebilir.

Deneyler bir teoriyi test edebilir ya da tamamen spekülatif olabilir. Yeni Zelanda doğumlu fizikçi Ernest Rutherford, bunun bir top mermisinin pelur kağıdından sekmesi gibi bir şey olduğunu söyledi- ve bu, onu atomun yapısı konusunda yeni bir düşünceye götürdü.

Bilim insanı yeni bir mekanizma ya da teori önerirken sonuçla ilgili bir öngörüde bulunabilirse, deney daha zorlu olurdu.Deney öngörülen sonuçları verirse, bilim insanı teorisini destekleyen kanıtlara sahip olur. Yine de bilim, 20.yüzyıl bilim felsefecisi Karl Popper’ın işaret ettiği gibi, bir teorinin doğru olduğunu asla kanıtlayamaz, şeylerin yalnızca yanlışlığını kanıtlayabilir. Öngörülen yanıtları veren her deney destekleyici kanıttır; ama başarısız olan tek bir deney, bütün teoriyi çökertebilir.

Yer-merkezli Evren, dört vücut sıvısı, ateş-element filojiston ve esir denilen gizemli bir ortam gibi yüzyıllardır savunulan kavramların yanlışlığı kanıtlandı ve yerlerini yeni teoriler aldı. Bunlar da yalnızca teoridir ve çürütülebilir, birçok durumda destekleyici kanıtlara bakılırsa, ihtimal dışı olmasına rağmen.

Düşüncelerin İlerlemesi

Bilim nadiren sade, mantıksal adımlarla ilerler. Birbirinden bağımsız çalışan bilim insanları eş zamanlı keşifler yapabilirler, ama neredeyse her ilerleme, önceki çalışmalara ve teorilere bir ölçüde dayanır. Büyük Hadron Çarpıştırıcısı, LHC, olarak bilinen devasa aygıtı yapmanın tek nedeni, 40 yıl önce, 1964’te varlığı öngörülen Higgs parçacığını aramaktı. Bu öngörü, atomun yapısına ilişkin Rutherford’a kadar geri giden on yılların teorik çalışmalarına ve Danimarkalı fizikçi Niels Bohr’un 1920’lerdeki çalışmasına dayanıyordu, bu çalışmalar da 1897’de elektronun keşfedilmesine, o da 1869’da katodun keşfine dayanmaktaydı. Vakum pompasi ve 1799’da icat edilen pil olmasıydı bunların hiçbiri olamazdı böylece zincir on yıllarca ve yüzyıllarca geriye gider. Büyük İngiliz fizikçi Isaac Newton’ın ünlü bir sözü vardır: “Daha uzağı gördümse, devlerin omuzlarında durduğum içindir.” Öncelikle Galileo’yu kast ediyordu, ama İbn-i Heysem’in Kitabu’l-Menazır’ının bir kopyasını da görmüş olabilir.

İlk Bilim İnsanları

Bilimsel bir bakışı olan ilk filozoflar, MÖ 5. ve 6. yüzyıllarda eski Yunan dünyasında aktifti. Miletoslu Thales, MÖ 585’te bir Güneş tutulmasını öngördü; Pythagoras, 50 yıl sonra bugünkü Güney İtalya’da bir matematik okulu kurdu ve Ksenophanes, bir dağda deniz kabukları bulduktan sonra, bütün Yer’in bir zamanlar denizle kaplı olması gerektiği sonucuna vardı.

MÖ 4. yüzyılda Sicilya’da Empedokles, toprak, hava, ateş ve suyun “her şeyin dört kökü” olduğunu iddia etti. Taraftarlarını volkanik Etna Dağı’nın kraterine götürdü ve anlaşılan, ölümsüz olduğunu göstermek için, kraterin içine atladı. Sonuç olarak onu bugün hatırlıyoruz.

1200 base image 4.1424268652

Yıldız Gözlemcileri

Bu arada Hindistan’da, Çin’de ve Akdeniz’de insanlar, gök cisimlerinin hareketlerini anlamaya çalışıyordu. Yıldız haritaları yaptılar – kısmen navigasyon yardımcı olsun diye, yıldızlara ve yıldız gruplarına ad verdiler. Birkaç yıldızın, “sabit yıldızlara” göre düzensiz bir yol izlediğini de fark ettiler. Yunanlar, bu gezici yıldızlara “gezegen” dedi. Çinliler, MÖ 240’ta Halley kuyruklu yıldızını ve 1054’te şimdi Yengeç Bulutsusu olarak bilinen bir süper novayı fark ettiler.

Beytü’l-Hikmet

MS 8. yüzyılda Abbasi halifesi, yeni başkenti Bağdat’ta muhteşem bir kütüphane olan bilgelik evi Beytü’l-Hikme’yi açtı. Bu, İslam bilim ve teknolojisinin hızlı ilerlemesine ilham verdi. Yıldızların konumunu kullanan bir navigasyon aleti olan usturlabın yanı sıra, çok sayıda zeka işi mekanik alet icat edildi. Simya gelişti ve damıtma gibi tekikler ortaya çıktı. Kütüphanedeki alimler Yunanistan’dan ve Hindistan’dan pek çok önemli kitabı toplayıp Arapçaya çevirdi. Batı, kadim eserleri bunların sayesinde daha sonra yeniden keşfetti. Hindistan’dan alınan Arap “rakamlarını” -sıfır dahil- öğrendi.

Modern Bilimin Doğuşu

Batı dünyasında Kilisenin bilimsel hakikat üzerindeki tekeli zayıflamaya başlarken, 1543 yılı çığır açıcı iki kitabın yayımlanmasına tanık oldu. Belçikalı anatomici Andreas Vesalius, insan cesetlerinde yaptığı diseksiyonlari muhteşem görsellerle açıklayan De Humani Corporis Fabrica‘yı çıkardı. Aynı yıl Polonyalı hekim Nicolaus Copernicus, Evrenin merkezinin Güneş olduğunu ifade edip, bin yıl önce İskenderiyeli Ptolemaios’un oluşturduğu Yer-merkezli modeli altüst eden De Revolutionibus Orbium Coelestium‘u yayımladı.

1600’de İngiliz hekim William Gilbert De Magnete’ye yayımladı; burada Yer’in kendisi bir mıknatıs olduğu için pusula ibresinin kuzeyi gösterdiğini açıkladı. Yerkürenin merkez çekirdeğinin demirden olduğunu bile öne sürdü. 1623’te başka bir İngiliz hekim, William Harvey, kalbin nasıl bir pompa gibi çalışıp kanı bütün vücuda ilettiğini ilk kez açıkladı ve böylece, 1400 yıl geriye, Yunan-Romalı hekim Galenos’a kadar geri giden önceki teorileri geçersizleştirdi. 1660’larda Anglo-İrlandalı kimyacı Robert Boyle, kimyasal bir elementi tanımladığı The Sceptical Chymist de aralarında olmak üzere bir dizi kitap çıkardı. Bu, kimyanin, mistik simyadan ayrı bir bilim olarak doğuşunun işaretiydi.

Bir süre Boyle’un asistanlığını yapan Robert Hooke, 1665’te ilk çok satan bilimsel eser Micrographia‘yı çıkardı. Pire ve sinek gözü gibi konuların katlanıp açılır görselleri daha önce hiç kimsenin görmediği mikroskobik bir dünyayı herkese açtı. Sonra 1687’de, birçok kişinin tüm zamanların en önemli bilim kitabı olarak gördüğü eser, Isaac Newton’ın kısaca Principia olarak bilinen Philosophiae Naturalis Principia Mathematica’sı geldi. Newton’ın hareket yasaları ve evresel çekim ilkesi klasik fiziğin temelini oluşturur.

Elementler, Atomlar, Evrim

18. yüzyılda Fransız kimyacı Antoine Lavoisier yanmada oksijenin rolünü keşfedip, eski filojiston teorisini itibarsızlaştırdı. Kısa sürede bir sürü yeni gaz ve özellikleri araştırıldı. Atmosferdeki gazlarla ilgili düşünce, İngiliz meteorolog John Dalton’ın her elementin benzersiz atomlardan oluştuğunu öne sürüp, atom ağırlıkları düşüncesini önermesine yol açtı. Sonra Alman kimyacı August Kekulé moleküler yapının temelini geliştirirken, Rus mucit Dimitri Mendeleyev, ilk genel kabul gören periyodik tabloyu oluşturdu.

1799’da İtalya’da Alessandro Volta’nın elektrik bataryasını icat etmesi yeni bilim alanları açtı; Danimarkalı fizikçi Hans Christian Orsted ve İngiliz çağdaşı Michael Faraday bu alana girip, yeni elementler ve elektromanyetizmayı keşfetti ve bu da, elektrikli motorun icat edilmesine yol açtı. Bu arada, klasik fiziğin düşünceleri atmosfere, yıldızlara, ışığın hızına ve ısının doğasına uygulandı; bunlar da gelişip, termodinamik bilimine yol açtı.

Kaya tabakalarını inceleyen jeologlar Yer’in geçmişini yeniden inşa etmeye başladılar. Soyu tükenmiş yaratıkların kalıntıları çıkmaya başladıkça, paleontoloji moda oldu. Eğitimsiz İngiliz genç kız Mary Anning, dünyaca ünlü fosil kalıntı derleyicisi oldu. Dinozorlarla birlikte, en ünlüsü İngiliz doğa bilimci Charles Darwin’den olmak üzere evrim düşünceleri, yaşamın kökeni ve ekolojisi üzerine yeni teoriler geldi.

bilim tarihi

Belirsizlik ve Sonsuzluk

Yirminci yüzyılın başında Albert Einstein adlı genç bir Alman kendi görelilik teorisini önerip, klasik fiziği sarstı ve mutlak zaman ve mekan düşüncesine son verdi. Yeni atom modelleri önerildi; ışığın hem bir parçacık hem bir dalga olarak hareket ettiği gösterildi; başka bir Alman, Werner Heisenberg, Evren’in belirsiz olduğunu gösterdi.

Bununla birlikte, son yüzyılın en etkileyici gelişmesi, teknik ilerlemelerin bilimin daha önce olduğundan daha hızlı ilerlemesini olanaklı kılması, artan bir kesinlikte birbirini izleyen düşünceler oldu. Daha güçlü parçacık çarpıştırıcıları, maddenin yeni temel birimlerini açığa çıkardı. Daha güçlü teleskoplar Evren’in genişlemekte olduğunu ve bir Büyük Patlamayla başladığını gösterdi. Kara delikler düşüncesi kök salmaya başladı. Anlaşılan, her neyseler kara madde ve kara enerji Evren’i dolduruyordu ve astronomlar yeni dünyalar -uzak yıldızların yörüngesinde, bazılarında yaşam bile olabilen gezegenler- keşfetmeye başladılar. İngiliz matematikçi Alan Turing evrensel hesap makinesini düşündü ve 50 yıl içinde kişisel bilgisayarlarımız, dünya çapında ağımız ve akıllı telefonlarımız oldu.

Yaşamın Sırları

Biyolojide, kromozomların kalıtımın temeli olduğu gösterildi ve DNA’nın kimyasal yapısının şifresi çözüldü. Bu durum 40 yıl sonra insan genom projesine yol açtı, göz korkutucu bir iş gibi görünüyordu, ama bilgisayar yardımıyla, ilerledikçe daha da hızlandı. DNA dizileme, artık neredeyse rutin bir laboratuvar işlemidir; gen terapisi umut olmaktan çıkıp, gerçekliğe dönüştü ve ilk memeli klonlandı.

Bugünün bilim insanları bu ve diğer başarıların üzerine başarı katarken, durmak bilmeyen hakikat arayışı devam ediyor. Öyle görünüyor ki, her zaman sorular yanıtlardan fazla olacak ve gelecekteki keşifler de kesinlikle şaşırtmaya devam edecek.