Katı bir madde ısıtılırsa sıvıya, sıvı ısıtılırsa gaza dönüşür. Örneğin, buzu ısıtırsak da sıvı hale geçer, su olur. Suyu ısıtırsak gaz hale geçer, su buharı elde ederiz. Peki, gaz ısıtılırsa ne olur? Madde, katı, sıvı ve gazın ötesinde plazmaya, yani iyonlaşmış gaza dönüşür. Bilimadamları plazmayı 1920’lerde keşfettiler ve maddenin dördüncü hali olarak kabul ettiler.

maddenin halleri

Plazmayı anlamak için önce maddenin atom yapısını iyi öğrenmek gerekir. Maddenin atomlardan oluştuğunu biliyoruz. Atomlar da bir çekirdek ve bu çekirdeğin çevresinde dönen elektronlardan oluşur. Çekirdeğin iki atomaltı parçacığı vardır: proton ve nötron. Nötronların elektrik yükü yoktur. Protonlar artı (+), elektronlar eksi (-) yüklüdür. Mıknatıslarda zıt kutuplar birbirini çeker, değil mi? Benzer şekilde protonlar da çekirdek çevresinde dönen elektronları çekerler. Yoksa, elektronlar dönmenin etkisiyle uzaklaşıp giderlerdi. Bir atomda bulunan proton ve elektron sayıları eşittir. Böyle bir atom yüksüzdür. Ama atomlar elektron kazanabilir ya da kaybedebilir. Bu durumda iyonlaşırlar. Bir anda kimya biliminin içine daldık, ama bunları bilmek önemli. Çünkü maddenin plazma halinde atomlar serbest elektronlar ve iyonlara ayrışır. Maddeyi bu hale getiren yüksek sıcaklık, yüksek voltaj ya da yüksek basınçtır. Milyonlarca derecedeki bir sıcaklık, çekirdek çevresinde dolanan elektronları hızlandırır. Elektronlar öyle hızlanır ki, protonların çekim etkisinden kurtulurlar.

plazma

Bunları anlamak zor olabilir. Çünkü plazma çevremizde sıklıkla görebileceğimiz bir madde hali değil. Yine de farkında olmadan plazmayla ilgili bir şeyler duymuş ya da görmüş olabilirsiniz! Sözgelimi, floresan lamba! Yanan bir floresan lambanın içinde maddenin plazma hali bulunur. Lambayı açmak için elektrik düğmesine bastığınızda yüksek elektrik voltajı uygularsınız. Elektrik, ince uzun tüpte akarken tüpün içindeki gazın atomlarını uyarır ve yükler. Bu da lamba içinde plazma, dolayısıyla ışık oluşmasına neden olur. Diğer bir plazma örneği, neon lambalardır. Benzer şekilde elektrik, neon atomlarını yükler ve bir tüpün içindeki gaz plazmaya dönüşür. Peki, yıldırımlara ne dersiniz? Fırtınalı havalarda gördüğünüz yıldırımlar da çevrelerindeki havanın plazma haline gelmesine neden olur. Atmosferin yoğun radyasyona uğrayan manyetosfer katmanında oluşan “kuzey ışıklarını” biliyor musunuz? Güneş rüzgarlarıyla uzaya savrulan yüklü parçacıklar, Dünya’nın manyetik alanına yakalanır. Burada yakalanan parçacıklar, manyetik alan boyunca ilerler ve bir bölümü kutup bölgelerinde atmosfere girer. Bu parçacıklar, oksijen ve azot atomlarıyla çarpışır ve elektronları uzaklaştırarak uyarılmış düzeylerde iyon oluştururlar. Bu iyonlar, floresan ya da neon lambalarda olduğu gibi ışınım yapar. Bu kendine özgü, olağanüstü güzellikteki ışınıma “kuzey ışıkları” (aurora) denir. İşte, bu ışıkların kaynağı plazmadır. Alaska, İskoçya ya da Norveç’in kuzeyi gibi bölgelerde havanın açık olduğu bazı gecelerde kuzey ışıklarını görmek olasıdır.

Birçok insan, Güneş ve gezegenler arasında uzayın boş olduğunu düşünür. Oysa Güneş, yıldızlar, gökadalar, yıldızlar arası ve gökadalar arası uzayda da plazma bulunur. Bilimadamları, görünür evrendeki maddenin % 99’unun plazma olduğunu tahmin ediyorlar. Görünür evren diyorlar; çünkü evrenin kütlesinin % 90’ının “karanlık madde”, yani bileşimi ya da hali hakkında hiçbir şey bilmediğimiz bir biçimde olduğunu düşünüyorlar. Tüm bunlar ne anlama gelir? Gökadaları düşünmek zor olabilir. Biz Güneş Sistemi’ni düşünelim. Güneş, bir yıldız ve şu anda milyonlarca derece sıcaklıkta bir gaz topu değil mi? Yüksek sıcaklıkta gazların iyonlaşarak plazmaya dönüştüğünü hatırlayın. Gerçekten Güneş’in korona adı verilen en dış tabakasında yüksek sıcaklıktan dolayı atomlar elektonlarını kaybetmiş durumdadır. Peki, Güneş plazma haldedir; ya gezegenler arası boşluğa plazma nereden gelir? Elbette Güneş rüzgarlarından! Güneş rüzgarları, plazmanın koronadan akmasıyla oluşur.

Plazmanın günlük yaşamımızdaki yerini de merak edebilirsiniz. Belki de plazma TV’leri duymuşsunuzdur. Yüksek aydınlatma verimiyle lambalarla, yarı iletkenlerin üretimiyle bilgisayar, TV ve elektronik eşyalarla plazma teknolojisi evlerimize girmeye başlıyor. Elektronik çip yapımı, elmas yapımı, radar ve füzyon araştırmalarına kadar birçok alanda plazmanın adı geçiyor. Plazma, tıpta da kullanım alanı buluyor; çünkü mikrop öldürücü etkisi var. NASA’da bilimadamları, plazma roket motorları geliştirmeye çalışıyorlar. Uzmanlar, plazma roket motorlarıyla uzay gezilerinin daha kısa ve masrafsız olacağını, hatta Mars’a insanlı uçuşun böyle bir motorla gerçekleşebileceğini düşünüyorlar. Endüstride de kaplama, temizleme, aşındırma, kesme, eritmeden tutun, kimyasal olarak maddeleri değiştirme işlemlerine kadar her alanda kullanılıyor, deneniyor, araştırılıyor. Plazmanın birçok değişik alanda kullanılmaya çalışılmasının bir nedeni de iyi bir iletken, dolayısıyla elektrik ve manyetik alanlara yanıt veren etkili bir radyasyon kaynağı olması. Uzmanlar, bu kaynağın nükleer kaza riski olmadığını da ekliyorlar. İyi, etkin ve doğru kullanılırsa plazma, yeni alanlarda da yaşamımıza girebilecek ucuz bir enerji kaynağı olacak gibi gözüküyor.

1807’de İsveçli kimyacı Jöns Jakob Berzelius, canlılardaki kimyasallar ile diğer kimyasallar arasında temel bir fark bulunduğunu gösterdi. Berzelius’a göre bu benzersiz “organik” kimyasallar yalnızca canlılar tarafından bir araya getirilebilirdi ve bir kez bozulduktan sonra, yapay olarak yeniden meydana getirilemezlerdi. Düşünceleri, yaşamın özel olduğunu ve canlılara kimyacıların anlayamayacağı bir “yaşam gücü” bahşedildiğini savunan ve “vitalizm” olarak bilinen egemen teoriye uygundu. Bu nedenle, Friedrich Wöhler adlı Alman bir kimyacının, organik kimyasalların hiç de benzersiz olmadıklarını, bütün kimyasallarla aynı temel kurallara göre davrandıklarını göstermesi sürpriz oldu. Organik kimyasalların karbon bazlı bir yığın molekülden oluştuğunu artık biliyoruz. Karbon bazlı moleküller gerçekten de yaşamın temel bileşenleridir; ama birçoğu Wöhler’in keşfettiği gibi organik olmayan kimyasallardan sentezlenebilir.

Kimyasal gübrelerde yaygın kullanılan üre, bitkilerin büyümesinde çok önemli olan nitrojen bakımından zengindir. İlk kez Wöhler’in yaptığı sentetik üre, şimdi kimya sanayinin temel ham maddelerinden biridir.

Wöhler’in atılımı, bilimsel bir çekişmeden ötürü gerçekleşti. 1820’lerin başında Wöhler ve kimyacı arkadaşı Justus von Liebig, çok farklı gibi görünen iki maddenin – patlayıcı olan gümüş fulminat ve patlayıcı olmayan gümüş siyanat – özdeş kimyasal analizini ortaya koydu. Her biri diğerinin yanlış sonuçlara vardığını sandı; ama yazıştıktan sonra, ikisinin de haklı olduğu anlaşıldı. Bu grup bileşikler kimyacıların şunu anlamalarına yol açtı: Maddeler yalnızca moleküldeki atom sayılarına ve türüne göre değil, atomların düzenlenişine göre de tanımlanır. Aynı formüller, farklı özelliklere sahip farklı yapılara uygulanabilir bu farklı yapılara, Berzelius daha sonra izomerler adını verdi. Wöhler ile Liebig, daha sonra parlak bir ortaklık kurdu; ama 1828’de Wöhler organik kimyasallarla ilgili hakikate tek başına tosladı.

Friedrich

Wöhler Sentezi

Wöhler amonyum siyanat elde etme beklentisiyle, gümüş siyanat ve amonyum klorürü karıştırıyordu. Ama amonyum siyanattan farklı özelliklere sahip beyaz bir madde elde etti. Kurşun siyanat ile amonyum hidroksiti karıştırınca da aynı toz ortaya çıktı. Analiz, beyaz tozun üre – idrarın temel bileşenlerinden biri ve amonyum siyanatla aynı kimyasal formüle sahip olan organik bir madde – olduğunu gösterdi. Berzelius’un teorisine göre bu, yalnızca canlılar tarafından meydana getirilebilirdi ama Wöhler, organik olmayan kimyasallardan sentezlemişti. Wöhler, Berzelius’a ürenin aslında amonyum siyanatın bir izomeri olduğunu açıklayarak, “böbrek kullanmadan üre yapabildiğimi size anlatmalıyım” diye yazdı.

Wöhler’in keşfinin öneminin anlaşılması yılları aldı. Yine de, bütün canlıların kimyasal süreçlere nasıl bağlı olduğunu açığa çıkarmanın yanı sıra, değerli organik kimyasalların ticari ölçekte sentezini de olanaklı kılan modern organik kimyanın gelişmesinin yolunu gösterdi. 1907’de bu tür kimyasallardan Bakalit denilen sentetik bir polimer üretildi ve modern dünyayı şekillendiren “Plastik Çağı” başladı.

Friedrich Wöhler Kimdir?

Almanya’da Frankfurt’a yakın Eschersheim’de doğan Friedrich Wöhler, Heidelberg Üniversitesinde doğum doktorluğu eğitimi aldı. Ama kimyaya tutkusu vardı ve 1823’te, Stockholm’de Jöns Jakob Berzelius’tan ders almaya gitti. Almanya’ya dönünce, kimya alanında dikkate değer ve değişik bir mesleki yaşama başladı.

Friedrich Wöhler

Organik bir maddenin ilk yapay sentezi dışında, Wöhler’in keşifleri – çoğu kez Justis von Liebig’le birlikte yaptığı – arasında alüminyum, berilyum, itriyum, titanyum ve silikon da vardı. “Radikaller” – başka maddeleri oluşturan temel moleküler gruplar – düşüncesinin gelişmesine de yardımcı oldu. Bu teori, daha sonra çürütülmesine rağmen, bugün moleküllerin nasıl bir araya geldiğinin anlaşılmasının yolunu açtı. Sonraki yıllarda Wöhler göktaşlarının kimyası konusunda otorite haline geldi ve bir nikel saflaştırma fabrikasının kurulmasına yardım etti.

Önemli Eserleri:
1830 – Summary of Inorganic Chemistry
1840 – Summary of Organic Chemistry

Organik Maddeler Hakkında Tarihsel Gelişmeler

1770’ler – Antoine Lavoisier ve diğerleri, suyun ve tuzun ısıtıldıktan sonra önceki hallerine geri dönebildiklerini, ama şekerin ya da odunun dönmediğini gösterir.

1807 – Jöns Jakob Berzelius, organik kimyasallar ile organik olmayan kimyasallar arasında temel bir farklı ortaya koyar.

1852 – İngiliz kimyacı Edward Franklin valans düşüncesini, yani atomların diğer atomlarla birleşme yeteneğini ortaya koyar.

1858 – İngiliz kimyacı Archibald Scott Couper atomlar arasındaki bağlar düşüncesini ortaya koyup, valansın nasıl çalıştığını açıklar.

1858 – Couper ve August Kekule organik kimyasalların, diğer atomların yan kollarına bağlı karbon atomlarının oluşturduğu zincirlerle oluştuğunu öne sürer.

Alessandro Volta’nın pili buluşundan esinlenen kimyacılar kuşağının öncü ışığı İsveçli Jöns Jakob Berzelius bir dizi deney yapıp, elektriğin kimyasallar üzerindeki etkisine baktı. 1819’da yayımlanan, Elekrokimyasal İkicilik (Düalizm) denilen ve bileşiklerin karşıt elektrik yüklü elementlerin bir araya gelmesiyle yaratıldığını öne süren bir teori geliştirdi. 1803’te Berzelius bir maden sahibiyle birlikte çalışıp, bir volta pili yapmış ve elektriğin tuzları nasıl ayırdığını görmüştü. Alkali metaller ile alkalin topraklar pilin negatif kutbuna; oksijen, asitler ve oksitlenmiş maddeler pozitif kutbuna göç etti. Tuzlu bileşiklerin pozitif yüklü bazik bir oksit ile negatif yüklü asidik bir oksiti birleştirdiği sonucuna vardı.

Berzelius düalist teorisini geliştirip, bileşiklerin, bileşen parçalar arasında karşıt elektrik yükünün çekimiyle birbirine bağlandığını öne sürdü. Bu teori, daha sonra yanlış olduğu gösterilmesine rağmen, kimyasal bağlara ilişkin araştırmaları tetikledi. 1916’da elektriksel bağlanmanın “iyonik” bağlanma olarak gerçekleştiği; yani atomların elektron kazanarak ya da kaybederek birbirini karşılıklı olarak çeken yüklü atomlar ya da iyonlar haline geldikleri anlaşıldı. Aslında bu, bir bileşikte atomların bağlanma yollarından yalnızca biriydi – biri de, elektronların atomlar arasında paylaşıldığı kovalent bağdır.

Kimyasal Bileşikler Hakkında Tarihsel Gelişmeler

1704 – Isaac Newton atomların bir kuvvet tarafından birbirine bağlandığını öne sürer.

1800 – Alessandro Volta iki farkı metali yan yana koymanın elektrik üretebildiğini gösterir ve böylece ilk pili yaratır.

1807 – Humphry Davy tuzları elektrolizle ayırarak sodyumu ve diğer metal elementleri keşfeder.

1857-58 – August Kekule ve diğerleri valans – bir atomun oluşturabildiği bağ sayısı – düşüncesini geliştirir.

1916 – ABD’li kimyacı Gilbert Newton Lewis elektronların paylaşıldığı kovalent bağ düşüncesinin öne sürerken, Alman fizikçi Walther Kossel iyonik bağlar düşüncesini önerir.

1800’de Alessandro Volta “volta pili“ni – dünyanın ilk pilini – icat etti ve çok geçmeden birçok bilim insanı pille deneyler yapmaya başladı.

İngiliz kimyacı Humphry Davy pilin elektriğinin kimyasal bir tepkime tarafından üretildiğini anladı. Pilin iki farklı metali (elektrotlar) tuzlu suya batırılıp aralarına konan kağıt aracılığıyla tepkimeye girince elektrik yükü akar. 1807’de Davy kimyasal bileşikleri ayırmak için bir pilin elektrik yükünü kullanabileceğini fark ederek yeni elementler keşfetti ve daha sonra elektroliz denilen işleme öncülük etti.

Yeni Metaller

Davy elektrik iletmesi için laboratuvarında nemli havaya tutarak nemlendirdiği kuru potasyum hidroksite (potas) iki elektrot soktu. Negatif yüklü elektrotta metal kürecikler oluşmaya başladı. Kürecikler yeni bir elementti: metal potasyum. Birkaç hafta sonra sodyum hidroksiti (sudkostik) elektrolize tabi tuttu ve metal sodyum elde etti. 1808’de elektroliz kullanıp dört metal element daha – kalsiyum, baryum, stronsiyum ve magnezyum – ve metaloit boru keşfetti. Elektroliz gibi, bu metallerin ticari kullanımının da oldukça değerli olduğu anlaşıldı.

Kimya Tarihi

1735 – İsveçli kimyacı Georges Brandt kobaltı keşfeder; bu sonraki 100 yılda bulunacak birçok yeni metalin ilkidir.

1772 – İtalyan hekim Luigi Galvani elektriğin bir kurbağa üzerindeki etkisini fark eder ve elektriğin biyolojik olduğuna inanır.

1799 – Alessandro Volta birbirine dokunan metallerin elektrik ürettiğini gösterir ve ilk bataryayı yaratır.

1834 – Davy’nin eski asistanı Michael Faraday elektrolizin yasalarını yayımlar.

1869 – Dimitri Mendeleyev bilinen elementleri periyodik bir tablo şeklinde düzenleyip, ilk kez Davy’nin 1807’te saptatığı yumuşak alkali metaller grubunu yaratır.

18. yüzyılın sonuna doğru bilim insanları dünyanın bir dizi temel maddeden ya da kimyasal elementten oluştuğunu anlamaya başlamıştı. Ama hiç kimse bir elementin ne olduğundan emin değildi. İngiliz meteorolog John Dalton hava durumuna ilişkin incelemelerinde, her elementin kendine özgü benzersiz, özdeş atomlardan oluştuğunu ve bir elementi ayırt eden ve tanımlayan şeyin bu özel atom olduğunu gördü. Dalton kimyanın temelini attı. Atom düşüncesinin tarihi eski Yunanistan’a kadar geri gider; ama hep bütün atomların özdeş oldukları varsayılmıştı. Dalton’ın farkı, her elementin farklı atomlardan oluştuğunu anlamış olmasıydı. O zaman bilinen elementleri – hidrojen, oksijen ve nitrojen dahil – oluşturan atomları “katı, tek parça halinde, sert, içine girilmez, hareketli parçacıklar” olarak tarif etti.

Dalton Atom Modeli 2

Elementler birbirleriyle birleşip sabit oranlı bileşikler oluşturur.
– Bu sabit oranlar her bir elementin atomlarının göreli ağırlığına bağlı olmalıdır.
– Bu nedenle bir elementin atom ağırlığı, bir bileşiğe giren her elementin ağırlığından hesaplanabilir.
Elementler tablosu nihai parçacıkların ağırlığını temel alır.

Dalton’ın düşünceleri, havanın su emme miktarını hava basıncının nasıl belirlediğini araştırırken ortaya çıktı. Havanın farklı gazların bir karışımı olduğuna inanmaya başladı. Deney yaparken, verili miktarda saf oksijenin aynı miktarda saf nitrojenden daha az su buharı tuttuğunu gözlemledi ve bundan, oksijen atomlarının nitrojen atomlarından daha büyük ve daha ağır olduğu sonucunu çıkardı.

Dalton Atom Modeli

Ağırlık Önemlidir

Dalton farklı elementlerin atomlarının ağırlıklarına göre ayırt edilebileceğini anladı. İki ya da daha fazla elementin atomlarının ya da “nihai parçacıklarının” birleşip çok basit oranlı bileşikler oluşturduklarını gördü ve bu şekilde, bir bileşiğe giren her elementin ağırlığıyla her atomun ağırlığını çıkarabilirdi. Çok hızlı bir biçimde o zaman bilinen her elementin atom ağırlığını ortaya çıkardı.

Atom Modelleri Nedir Özellikleri Nelerdir.

Dalton’a göre hidrojen en hafif gazdı, bu nedenle onun atom ağırlığını 1 olarak belirledi. Suda hidrojenle birleşen oksijenin ağırlığından ötürü, oksijenin atom ağırlığını 7 olarak belirledi. Ne var ki, Dalton’un yönteminde bir kusur vardı; çünkü aynı elementin atomlarının birleşebileceğini fark etmedi. Bir atom bileşiğinde – bir molekülde – her elementten yalnızca bir atom olduğunu varsaydı. Ama Dalton’un çalışması bilim insanlarını doğru yola sokmuştu ve on yıl içinde İtalyan fizikçi Amedeo Avogadro bir moleküler oran sistemi geliştirip, atom ağırlıklarını doğru bir biçimde hesapladı. Yine de Dalton’un teorisinin temel düşüncesinin – her elementin kendine özgür benzersiz büyüklükte atomları olduğu düşüncesi – doğru olduğu anlaşıldı.

Dalton’nun tablosu farklı elementlerin simgelerini ve atom ağırlıklarını gösterir. Dalton, meteoroloji üzerinden, hava ve su parçacıklarının neden birbirine karışabildiğini kendine sorarak atom teorisine ulaştı.

John Dalton Kimdir?

İngiltere’de Lake District’te 1766’da Quaker bir ailede doğan John Dalton, 15 yaşından itibaren düzenli hava durumu gözlemleri yaptı. Bunlar birçok önemli içgörü edinmesini sağladı (atmosfer neminin hava soğuyunca yağmura dönüştüğünü görmesi gibi). Dalton meteorolojik araştırmaları dışında, kardeşiyle paylaştıkları bir durumdan da büyülendi: renk körlüğü. Bu konuyla ilgili bilimsel tebliği, 1817’de başkanlığına seçildiği Manchester Edebiyat ve Felsefe Derneğine kabul edilmesini sağladı. Bu dernek için, atom teorisiyle ilgili olanlar da dahil yüzlerce bilimsel yazı yazdı. Atom teorisi hızla kabul gördü ve Dalton sağlığında bir şöhret oldu. 1844’te Manchester’da cenaze törenine 40.000’den fazla kişi katıldı.

John Dalton

Önemli Eserleri:
1805 – Experimental Enquiry into the Proportion of the Several Gases or Elastic Fluids, Constituting the Atmosphere (Atmosferi Oluşturan Çeşitli Gazların ya da Elastik Sıvıların Oranları Üzerine Deneysel İnceleme)
1808 – 1827 – New System of Chemical Philosophy (Yeni Kimya Felsefesi Sistemi)

Atom Modelleri

Elementler Hakkında Tarihsel Gelişmeler

MS yaklaşık 400 – Demokritos, dünyanın bölünmez parçacıklardan oluştuğunu öne sürer.

MS 8. yüzyıl – İranlı bilgin Cabir bin Hayyan elementleri metal olanlar ve olmayanlar şeklinde sınıflandırır.

1794 – Joseph Proust; bileşiklerin, her zaman aynı oranda birleşen elementlerden oluştuğunu gösterir.

1811 – Amedeo Avogadro, eşit miktarda farklı gazın eşit sayıda molekül içerdiğini gösterir.

1869 – Dimitri Mendeleyev, elementleri atom ağırlıklarına göre sergileyen bir periyodik tablo çizer.

1897 – Joseph John Thomson elektronu keşfederek, olası en küçük parçacığın atom olmadığını gösterir.

Fransız kimyacı Joseph Proust 1794’te yayımladığı Sabit Oranlar Yasası, elementler nasıl birleşirse birleşsin, bir bileşikte her elementin oranının her zaman aynı olduğunu gösterir. Bu teori, elementlerle ilgili bu dönemde ortaya çıkıp modern kimyanın temelini oluşturan temel düşüncelerden biriydi.

Joseph Proust

Proust keşfini yaparken, Fransız kimyacılığında Antoine Lavoisier’in öncülük ettiği, ağırlıkların, oranların ve yüzdelerin dikkatli ölçülmesini savunan bir eğilime uygun davranıyordu. Proust, metal oksitlerinde metallerin oksijenle birleşme yüzdelerini inceledi. Metal oksitler oluştuğunda, metal ve oksijen oranının sabit olduğu sonucuna vardı. Aynı metal farklı bir oranda oksijenle birleştiğinde, farklı özelliklere sahip farklı bir bileşik oluşturuyordu.

elementler

Herkes Proust’la hemfikir değildi; ama 1811’de İsveçli kimyacı Jöns Jakob Berzelius, Proust’un teorisinin, John Dalton’ın elementlere ilişkin yeni atom teorisine – her elementin kendi benzersiz atomlarından oluştuğunu söyleyen teori – uygun olduğunu anladı. Bir bileşik her zaman aynı atomların bileşiminden oluşuyorsa, elementlerin her zaman sabit oranlarda birleştiğini söyleyen Proust’un savı doğru olmalı. Bu, bugün kimyanın temel yasalarından biri kabul edilir.

element tablosu

Elementler Hakkında Tarihsel Görüşler

MÖ 400 – Yunan düşünür Demokritos, dünyanın nihayetinde bölünmez küçük parçacıklardan – atomlar – oluştuğunu öne sürer.

1759 – İngiliz kimyacı Robert Dossie, “doygunluk oranı” dediği doğru oranda oldukları zaman maddelerin birleştiğini savunur.

1787 – Antoine Lavoisier ve Claude Louis Berthollet, kimyasal bileşikleri modern adlandırma sistemini tasarlar.

1805 – John Dalton; elementlerin, birleşerek bileşikleri oluşturan, tikel bir kütlenin atomlarından oluştuğunu gösterir.

1811 – İtalyan kimyacı Amedeo Avogadro, atomlar ile atomların oluşturduğu molekülleri ayrı tutar.

Fransız kimyacı Antoine Lavoisier, özellikle oksijene adını vererek ve yanmadaki rolünü ölçerek bilime yeni bir kesinlik düzeyi getirdi. Yanma sırasında gerçekleşen kimyasal tepkimelerde dikkatli kütle ölçümleri alarak, kütle korunumu ilkesini – bir tepkimede yer alan butün maddelerin toplam kütlesinin, tüm ürünlerinin toplam kütlesiyle aynı olduğu ilkesi – kanıtladı.

Lavoisier kapalı kaplarda çeşitli maddeleri ısıttı ve bir metalin ısıtılınca kazandığı kütlenin kaybolan havanın kütlesine eşit olduğunu buldu. Havanın “saf” kısmı (oksijen) bitince, yanmanın sona erdiğini de buldu. Geride kalan hava (büyük bölümü nitrojen) yanmayı desteklemiyordu. Bu nedenle yanmanın ısı, yakıt (yanan malzeme) ve oksijenin birleşmesini gerektirdiğini anladı.

Antoine Lavoisier

Lavoisier’in 1778’de yayımlanan bulguları yalnızca kütle korunumu ilkesini kanıtlamakla kalmadı, oksijenin yanmadaki rolünü saptayarak filojiston denilen bir ateş öğesine ilişkin teoriyi de yıktı.

Geçen yüzyılda bilim insanları yanıcı maddelerin filojiston içerdiklerini ve yanınca filojiston saldıklarını sanmıştı. Bu teori odun gibi maddelerin yanınca neden kütle kaybettiklerini açıklıyordu; ama magnezyum gibi başka maddelerin yanınca neden kütle kazandıklarını açıklamıyordu. Lavoisier’in dikkatli ölçümleri, hiçbir şeyin kaybolmadığı ya da eklenmediği, ama her şeyin dönüştüğü bir süreçte oksijenin kilit önemde olduğunu gösterdi.

Antoine Lavoisier çalışmaları

Oksijen Hakkında Tarihsel Gelişmeler

1667 – Alman simyacı Johann Joachim Becher, nesnelerin bir ateş öğesi tarafından yakılacak şekilde yapıldıklarını öne sürer.

1703 – Alman kimyacı Georg Ernst Stahl, bunun adını filojiston olarak değiştirir.

1772 – İsveçli kimyacı Carl Wilhelm Scheele “ateş hava”yı (daha sonra oksijen denilen) keşfeder, ama bulgularını 1777’e kadar yayımlamaz.

1774 – Joseph Priestley “filojistonsuz hava”yı (daha sonra oksijen denilen) yalıtır ve bulgularını Lavoisier’e anlatır.

1783 – Lavoisier hidrojen, oksijen ve suyla yaptığı deneylerle yanmayla ilgili düşüncelerini doğrular.

1789 – Lavoisier’in Elementary Treatise on Chemistry‘si 33 elementi adlandırır.

Elementary Treatise on Chemistry

1754’te Joseph Black, bizim şimdi karbondioksit (CO2) dediğimiz şeyi “sabit hava” olarak tarif etmişti. Bir gazı saptayan ilk bilim insanı olmanın yanı sıra, çeşitli “hava” türlerinin, yani gazların varlığını da gösterdi.

On iki yıl sonra Henry Cavendish adlı İngiliz bilim insanı, çinko, demir ve kalay gibi metallerin “asitlerdeki çözeltiyle yanar hava ürettiklerini” Londra’da Kraliyet Derneğine bildirdi. Bu yeni gaza, sıradan ya da “sabit hava” dan farklı olarak kolay yandığı için “yanar hava” dedi. Bugün biz ona hidrojen (H2) diyoruz. Bu, saptanan ikinci gaz ve yalıtılan ilk gaz elementti. Cavendish, çinko-asit karışımının tepkime sırasındaki ağırlık kaybını ölçerek ve çıkan bütün gazları bir torbada toplayıp tartarak – önce gazla dolu sonra boş – bir gaz örneğinin ağırlığını ölçmeye koyuldu. Gazın hacmini bildiği için yoğunluğunu hesaplayabilirdi. Yanar havanın, sıradan havadan 11 kat daha az yoğun olduğunu buldu.

Henry Cavendish deneyleri

Düşük yoğunluklu gazın keşfi, havadan daha hafif olan uçan balonlara yol açtı. 1763’te Fransa’da mucit Jacques Charles ilk hidrojen balonunu uçurdu ve iki haftadan daha kısa bir süre sonra Montgolfier Kardeşler ilk insanlı sıcak-hava balonunu uçurdu.

hidrojen balonu
İlk hidrojen balonunun esin kaynağı Cavendish’ti ve büyük bir kalabalık tarafından alkışlandı. Günümüzde patlayıcı hidrojen yerine helyum kullanır.

Patlayıcı Keşifler

Cavendish kendi gazının ölçülmüş örnekleri ile bilinen hacimlerde havayı şişelerde karıştırdı ve şişelerin kapakların açıp, yakılmış kağıt parçalarıyla karışımları tutuşturdu. Bir birim hidrojen ile dokuz birim hava karışımında yavaş, sakin bir yanma olduğunu; hidrojen miktarının artmasıyla birlikte karışımın artan bir şiddetle patladığını; ama %100 hidrojenin tutuşmadığını gördü. Simyadan kalan ve yanma sırasında ateş benzeri bir elementin (“filojiston”) serbest kaldığını ifade eden köhne bir fikir, Cavendish’in düşüncesini sakatlamaktaydı. Bununla birlikte, deneylerinde ve raporlarında titizdi: “Öyle görünüyor ki, 423 ölçü yanar hava 1000 ölçü sıradan havayı filojistonlaştırmaya neredeyse yeter; patlamadan sonra kalan havanın miktarı, kullanılan sıradan havanın beşte dördünden biraz fazladır. Yanar havanın neredeyse tamamı ile sıradan havanın yaklaşık beşte birinin… yoğunlaşıp camı sıvayan çiğe dönüştüğü… sonucuna varabiliriz.”

Suyu Tanımlamak

Cavendish “filojistonlaştırma” terimini kullanmasına rağmen, çıkan tek yeni malzemenin su olduğunu kanıtlamayı başardı ve iki ölçek yanar havanın bir ölçek oksijenle birleştiği sonucunu çıkardı. Başka bir deyişle, suyun bileşimin H2O olduğunu gösterdi. Bulgularını Joseph Priestley’e bildirmesine rağmen, Cavendish sonuçları yayınlama konusunda o kadar çekingendi ki, arkadaşı İskoç mühendis James Watt 1763’te formülü ilan eden ilk kişi oldu. Bilime birçok katkısı arasında Cavendish havanın bileşimini de “dört parça filojistonlaşmış havayla (nitrojen) karıştırılmış bir parça filojistonsuzlaşmış hava (oksijen)” olarak hesapladı. Bu iki gazın Yer atmosferinin %99’unu oluşturduğunu bugün biliyoruz.

gazlar

Henry Cavendish Kimdir?

18. yüzyıl kimyasının ve fiziğinin en garip ve en parlak öncülerinden biri olan Hanry Cavendish 1731’de Fransa Nice’de doğdu. Her iki dedesi de düktü ve çok zengindi. Cambridge Üniversitesinde okuduktan sonra, Londra’daki evinde tek başına yaşadı ve çalıştı. Çok az konuşan ve kadınlardan utanan bir kişiydi; hizmetçilerine not bırakarak yemek siparişlerini verdiği söyleniyordu.

Henry Cavendish

Cavendish yaklaşık 40 yıl boyunca Kraliyet Derneğinin toplantılarına katıldı ve Royal Institution’da Humphry Davy’e yardım etti. Kimya ve elektrik alanında önemli özgün araştırmalar yaptı, ısının doğasını doğru bir biçimde tarif etti ve Yer’in yoğunluğunu ölçtü ya da halkın dediği şekliyle, “dünyayı tarttı“. 1810’da öldü. 1874’te Cambridge Üniversitesi, yeni fizik laboratuvarına onun adını verdi.

1661 – Robert Boyle bir element tanımlayıp, modern kimyanın temellerini atar.

1754 – Joseph Black, “sabit hava” dediği bir gazı, karbondioksiti saptar.

1772-75 – Joseph Priestley ve (ondan bağımsız) İsveçli Carl Wilhelm Scheele oksijeni yalıtır; onları gaza adını veren Antoine Lavoisier izler. Priestley de nitrik oksidi, azot oksidi ve hidrojen kloridi keşfeder, oksijen soluma ve gazoz yapma deneyleri gerçekleştirir.

1799 – Humphry Davy, azot oksidin ameliyatta bir anestetik olarak yararlı olabildiğini öne sürer.

1844 – Amerikalı dişçi Horace Wells anestezi için ilk kez azot oksit kullanır.

Glasgow Üniversitesinde ve daha sonra Edinburgh’da tıp profesörü olan Joseph Black, kimya dersleri de verdi. Önemli bir araştırmacı bilim insanı olmasına rağmen, vardığı sonuçları nadiren yayımladı, onun yerine derslerinde duyurdu; öğrencileri, yeni bilimin en ön saflarındaydı. Black’in bazı öğrencileri, işlerini yürütmenin maliyetleriyle ilgilenen İskoç viskisi damıtıcılarının oğullarıydı. Yaptıkları tek şey sıvıyı kaynatıp buharı yoğunlaştırmak olduğu halde, viski damıtmanın neden bu kadar pahalı olduğunu soruyorlardı.

Kaynamayla İlgili Yeni Bir Düşünce

1761’de Black ısının sıvılar üzerindeki etkisini araştırdı ve bir çaydanlık su sobanın üzerinde ısıtılırsa, sıcaklığın 100°C’ye ulaşana kadar sürekli arttığını keşfetti. O zaman su kaynamaya başlar, ama suya hala ısı girmesine rağmen sıcaklık artmaz. Black, suyu buhara dönüştürmek – ya da modern terimlerle, moleküllere onları sıvı içinde bir arada tutan bağlardan kurtulmalarına yetecek kadar enerji vermek – için, ısıya ihtiyaç olduğunu anladı. Bu ısı sıcaklığı değiştirmez ve kaybolur gibi görünür bu yüzden Black gizil ısı dedi. Daha doğrusu bu, suyun buharlaşmasının gizil ısısıdır. Bu keşif, termodinamik biliminin – ısıyı, ısının enerjiyle ilişkisini ve mekanik iş yapmak için ısı enerjisini harekete dönüştürmeyi inceleyen bilim – başlangıcı oldu.

su buharı

Suyun alışılmamış ölçüde yüksek bir gizil ısısı vardır; yani sıvı su uzun süre kaynadıktan sonra tamamı gaza dönüşür. Sebze pişirmede buharının bu kadar etkili olmasının, bu kadar etkili olmasının, buharın korkunç bir haşlama gücüne sahip olmasının ve ısıtma sistemlerinde kullanılmasının nedeni budur.

Buzu Eritmek

Suyu buhara dönüştürmek için ısıyı ihtiyaç olduğu gibi, buzu suya dönüştürmek için de ısıya ihtiyaç vardır. Eriyen buzun gizil ısısı, buzun bir içkiyi soğutacağı anlamına gelir. Buzu eritmek ısıyı gerektirir ve bu ısı, buzun içinde yüzdüğü ve soğuttuğu içkiden elde edilir.

Black bütün bunları imbikçilere açıkladı; ama para tasarruf etmelerine yardım edemedi. Buhar motorlarının neden bu kadar verimli olduklarını anlamaya çalışan meslektaşı James Watt’a da açıkladı. Daha sonra Watt, piston ve silindiri soğutmadan buharı yoğunlaştıran ayrı yoğunlaştırıcı düşüncesini ortaya attı. Bu düşünce buhar motorunu çok daha verimli bir makine, Watt’ı da zengin bir kişi haline getirdi.

Burada Black, Glasgow’daki atölyesinde mühendis James Watt’ı ziyaret ederken gösteriliyor. Watt, buharlı aletlerinden birini tanıtıyor.
Joseph Black james watt

Joseph Black Kimdir

Fransa’da Bordeaux’da doğan Joseph Black, Glasgow ve Edinburgh üniversitelerinde tıp okudu; profesörünün laboratuvarında kimyasal deneyler yaptı. 1754’te doktora tezinde Black, tebeşir (kalsiyum karbonat) ısıtılıp sönmemiş kireç (kalsiyum oksit) haline getirilince, genellikle inanıldığı gibi ateşten yakıcı bir ilke almadığını, aksine ağırlık kaybettiğini gösterdi. Black, hiçbir sıvı ya da katı üretilmediği için, bu kaybın bir gaz olması gerektiğini anladı ve tebeşirde sabitlenen bir hava (gaz) olduğu için ona “sabit hava” dedi. Sabit havanın (şimdi karbondioksit olarak bildiğimiz) soluduğumuz gazlar arasında olduğunu da gösterdi.

Joseph Black a

1756’dan itibaren Glasgow’da tıp profesörüyken Black, ısı konusunda dönüm noktası olan araştırmasını yaptı. Ulaştığı sonuçları yayımlamamasına rağmen, öğrencileri bulgularını yaydı. 1776’da Edinburgh’a taşındıktan sonra, araştırma yapmayı bırakıp ders vermeye ve – Sanayi Devrimi hız kazanırken – İskoçya sanayisinde ve tarımında kimya temelli yenilikler konusunda tavsiyelerde bulunmaya odaklandı.

1661 – Robert Boyle gazları yalıtmaya öncülük eder.

1750’ler – Joseph Black kimyasal tepkimelerden önce ve sonra malzemeleri tartar – ilk nicel kimya – ve karbondioksiti keşfeder.

1766 – Henry Cavendish hidrojeni yalıtır.

1774 – Joseph Priestley oksijeni ve diğer gazları yalıtır.

1798 – Amerika doğumlu İngiliz fizikçi Benjamin Thompson, ısının parçacıkların hareketiyle üretildiğini öne sürer.

1845 – James Prescott Joule devinimin ısıya dönüşmesini inceler ve ısının mekanik eşdeğerini ölçüp, verili bir mekanik iş miktarının aynı miktarda ısı ürettiğini söyler.

17. yüzyılın sonunda Isaac Newton hareket ve kütleçekim yasalarını saptayarak, bilimi her zamankinden daha kesin ve matematiksel hale getirdi. Çeşitli alanlarda bilim insanları Evren’i yöneten temel ilkeleri tanımladı ve bilimsel araştırmanın çeşitli kolları giderek daha fazla uzmanlaştı.

Universum small

Akışkan Dinamiği

1720’lerde İngiliz din adamı Stephen Hales bitkilerle bir dizi deney yaparak kök basıncını – bitkilerin sapı bu sayede yükselir – keşfetti ve laboratuvarda gaz toplama aygıtını, pnömatik hazneyi icat etti; bu aygıtın daha sonra havanın bileşenlerini saptamada yararlı olduğu anlaşıldı. İsviçreli matematikçi bir ailenin en parlak üyesi olan Daniel Bernoulli, Bernoulli denklemini formüle – bir akışkan hareket edince basıncı düşer – etti. Bu, kan basıncını ölçmesini olanaklı kıldı. Bu, aynı zamanda uçakların uçmasına olanak veren ilkedir de.

0 15db78 2a6ec649 XL

Daha sonra gizil ısı teorisini formüle edecek olan İskoç kimyacı Joseph Black 1754’te, kalsiyum karbonatın bozunması ve “sabit hava”nın, yani karbondioksitin oluşması üzerine dikkate değer bir doktora tezi üretti. Bu tez, kimyasal araştırma ve keşif alanında zincirleme bir tepkimenin kıvılcımını çaktı. İngiltere’de münzevi deha Henry Cavendish hidrojen gazını yalıttı ve suyun iki parça hidrojen ile bir parça oksijenden oluştuğunu kanıtladı. Muhallif papaz Joseph Priestley oksijeni ve başka birçok yeni gazı yalıttı. Felemenkli Jan Ingenhousz, Priestley’in bıraktığı yerden devam etti ve yeşil bitkilerin gün ışığında oksijen, karanlıkta karbondioksit saldıklarını gösterdi. Bu arada Fransa’da Antoine Lavoisier karbon, kükürt ve fosfor dahil, birçok elementin oksijenle birleşerek yandığını ve bugün bizim oksit dediğimiz şeyi oluşturduğunu gösterip, yanıcı malzemelerin yanmalarını sağlayan ve filojiston denilen bir madde içerdiğine ilişkin teoriyi çürüttü. (Ne yazık ki, Fransız devrimciler Lavoisier’i giyotine gönderecekti.)

1793’te Fransız kimyacı Joseph Proust, kimyasal elementlerin neredeyse her zaman belirli oranlarda birleştiklerini keşfetti. Bu, basit bileşiklerin formüllerini çıkarma yönünde yaşamsal bir adımdı.

Yer Bilimleri

Terazinin diğer ucuna Yer süreçlerine ilişkin bilgi büyük ilerlemeler kaydediyordu. Amerika’da Benjamin Franklin, şimşeğin bir elektrik biçimi olduğunu kanıtlamak için tehlikeli bir deney yapmanın dışında, Gulf Stream araştırmalarıyla büyük ölçekli okyanus akıntılarının varlığını kanıtladı. İngiliz hukukçu ve amatör meteorolog George Hadley, ticaret rüzgarlarını Yer’in dönüşüyle ilişki içinde açıklayan kısa bir kitapçık yayımlarken; Newton’ın bir düşüncesine sarılan Nevil Maskelyne, bir İskoç dağının kütleçekimini ölçmek için ağır hava koşullarında birkaç ay kamp kurdu. Bunu yaparken Yer’in yoğunluğunu ortaya çıkardı. James Hutton İskoçya’da çiftlik miras aldıktan sonra jeolojiyle ilgilenmeye başladı ve Yer’in daha önce sanılandan daha yaşlı olduğunu ortaya çıkardı.

1200 base image 4.1424268652

Yaşamı Anlamak

Bilim insanları Yer’in aşırı yaşını öğrenince, yaşamın nasıl başladığına ve evrildiğine ilişkin yeni düşünceler ortaya çıkmaya başladı. Zamanının ötesinde Fransız yazar, doğa bilimci ve matematikçi Georges-Louis Leclerc, diğer adıyla Comte de Buffon, modern evrim teorisi yönünde ilk adımları attı. Alman teolog Christian Sprengel ömrünün çoğunu bitkilerle böceklerin etkileşimini inceleyerek geçirdi ve erdişi çiçeklerin erkek ve dişi organları farklı zamanlarda çıkardıklarını, dolayısıyla kendi kendilerini döllemediklerini açıkladı. İngiliz rahip Thomas Robert Malthus dikkatini demografiye verdi ve nüfus arttıkça felaket öngören An Essay on the Principle of Population’ı (Nüfus Artışı Hakkında Araştırma) yazdı. Malthus’un kötümserliğinin yersiz olduğu (şimdiye kadar) anlaşıldı; ama kontrol edilmezse nüfus artışının kaynakları aşacağı düşüncesi, daha sonra Charles Darwin’i etkileyecekti.

DigiRev

Yüzyılın sonunda İtalyan fizikçi Alessandro Volta, izleyen on yıllarda ilerlemeleri hızlandıracak elektrik bataryasını icat ederek yeni bir dünyanın kapısını açtı. 18. yüzyıl boyunca öyle bir ilerleme olmuştu ki, İngiliz filozof William Whewell, filozoftan farklı yeni bir mesleğin yaratılmasına önerdi: “Genel olarak bilimle uğraşan birini tarif etmek için bir ada çok ihtiyacımız var. Ben bilim insanı deme eğilimindeyim.”

Genişleyen Ufuklar 1700 – 1800

1727 – İngiliz din adamı Stephen Hales kök basıncını gösteren Vegetable Staticks‘i yayımlar.

1735 – İsveçli botanikçi Carl Linnaeus flora ve fauna sınıflandırmasının başlangıcı olan Systema Naturae‘yi yayımlar.

1735 – George Hadley on yıllarca meçhul kalan kısa bir kitapçıkta ticaret rüzgarlarının davranışlarını açıklar.

1738 – Daniel Bernoulli gazların kinetik teorisinin temelini atan Hydrodynamica‘yı yayımlar.

1749 – Georges-Louis Leclerc, Histoire Naturelle‘nin ilk cildini yayımlar.

1754 – Joseph Black’in karbonatlar üzerine doktora tezi, nicel kimyada öncü eserdir.

1766 – Henry Cavendish, çinkoyu asitle tepkimeye sokarak hidrojen ya da yanar hava yapar.

1770 – Amerikalı diplomat ve bilim insanı Benjamin Franklin, Gulf Stream akıntısının bir haritasını yayımlar.

1774 – Joseph Priestley bir büyüteç ve Güneş ışığı kullanıp cıva oksidi ısıtarak oksijen meydana getirir, buna filojistonsuz hava der.

1774 – Antoine Lavoisier, Priestley’den tekniği öğrendikten sonra, aynı gazı meydana getirir ve adına oksijen der.

1774 – Nevil Maskelyne, bir dağın kütleçekimini ölçerek Yer’in yoğunluğunu hesaplar.

1779 – Jan Ingenhousz yeşil bitkilerin gündüz dışarıya oksijen verdiklerini keşfeder; bu, fotosentezdir.

1788 – James Hutton Yer’in yaşıyla ilgili teorisini yayımlar.

1793 – Christian Sprengel, tozlaşma üzerine kitabında bitki cinselliğini tasvir eder.

1798 – Thomas Robert Malthus insan nüfusu üzerine, daha sonra Charles Darwin ve Alfred Russel Wallace’ı etkileyen ilk denemesini çıkarır.

1799 – Alessandro Volta elektrik bataryasını icat eder.