Gezegen geçişleri, Johannes Kepler’in gezegen devinimine ilişkin üç yasasından ilkini – gezegenler eliptik bir yörüngede Güneş’in etrafında döner – test etme fırsatı sunmaktaydı. Venüs ve Merkür’ün güneşin eğrisinin önünden kısa süreli geçişleri – o zamanlar Kepler’in Rudolf Cetvelleriyle öngörülürdü – temelde yatan teorinin doğru olup olmadığını açığa çıkaracaktı.

venüs

İlk test – 1631’de Fransız astronom Pierre Gassendi’nin gözlemlediği Merkür geçişi – umut verici oldu. Ne var ki, bir ay sonra Venüs’ün geçişini saptama girişimi, Kepler’in rakamlarındaki yanlışlıklar nedeniyle başarısız oldu. Bu aynı rakamlar, 1639’da Venüs ile Güneş’in “tehlikeli bir yakınlaşması”nı öngörmekteydi; ama İngiliz astronom Jeremiah Horrocks, aslında bir geçişin gerçekleşeceğini hesapladı.

venüs gezegeni

4 Aralık 1639’da gündoğumunda, Horrocks en iyi teleskopunu kurup, Güneş kursunu bir karta odakladı. Öğleden sonra saat 15:15 civarında bulutlar dağıldı, Güneş’in önünden yavaş yavaş ilerleyen “sıra dışı büyüklükte bir leke” – Venüs – ortaya çıktı. Horrocks ilerleyişini karta işaretleyip her aralığın süresini ölçerken; bir arkadaşı da geçişi başka bir yerde ölçtü. Farklı bakış açılarından iki ölçü kümesini kullanan ve Venüs’ün Güneş’e göre çapını yeniden hesaplayan Horrocks, Yer’in Güneş’ten uzaklığını öncekilerden daha doğru tahmin edebildi.

venus

Venüs’ün Geçişi Hakkında Gözlemler

1543 – Nicolaus Copernicus, güneş-merkezli bir Evren’e ilişkin ilk eksiksiz savunmayı yapar.

1609 – Johannes Kepler bir eliptik yörüngeler sistemi önerir. Gezegen deviniminin ilk eksiksiz tasviri.

1663 – İskoç matematikçi James Gregory, 1631 ve 1639’da Venüs’ün geçişlerine ilişkin gözlemleri kullanarak Yer ile Güneş arasındaki tam mesafeyi ölçmenin bir yolunu tasarlar.

1769 – İngiliz kaşif Kaptan James Cook, Güney Pasifik’te Tahiti’de Venüs geçişini gözlemler ve kaydeder.

2012 – Astronomlar 21. yüzyılın son Venüs geçişini gözlemler.

1500’lerin sonunda gemi kaptanları manyetik pusulalara dayanarak okyanuslarda rotalarını tutturuyorlardı. Ama kimse nasıl çalıştıklarını bilmiyordu. Bazıları pusula ibresinin Kutup Yıldızı’na kapıldığını, bazıları Kuzey Kutup bölgesindeki manyetik dağlara çekildiğini sanıyordu. İngiliz hekim William Gilbert (1544-1603), bizzat Yer’in manyetik olduğunu keşfetti.

William Gilbert

Gilbert’in atılımı ani bir ilham sonucu değil, 17 yıllık titiz deneylerin sonucuydu. Gemi kaptanlarından ve pusulacılardan öğrenebileceği her şeyi öğrendi; sonra mıknatıs taşından “terrella” denilen bir model küre yaptı ve bununla pusula ibrelerini test etti. İbreler terrella’nın etrafında tıpkı gemi pusulalarının daha büyük ölçekte yaptığı gibi tepki verdi. Aynı sapma (manyetik kuzeyden farklı olan coğrafi kutupta gerçek kuzeyden biraz uzağı işaret eden) ve yönelim (küreye doğru yatayda aşağıya eğilen) örüntülerini gösterdi.

Terrella

Gilbert haklı olarak şu sonuca vardı: Bütün gezegen bir mıknatıstır ve demir bir çekirdeği vardır. Düşüncelerini 1600’de sansasyon yaratan kitabı De Magnete‘de (Mıknatıs Üzerine) yayımladı.

De Magnete

Johannes Kepler ve özellikle Galileo, Gilbert’in pekçok kişinin sandığı gibi Yer’in dönen göksel kürelere bağlı olmadığı, kendi manyetizmasının görünmez gücüyle kendi etrafında döndüğü önerisinden ilham aldı.

manyetik alan

Manyetik Alan Hakkında Tarihsel Gelişmeler

MÖ 6. yüzyıl – Yunan düşünür Miletoslu Thales manyetik kayaları ya da mıknatıs taşını fark eder.

MS 1. yüzyıl – Çinli kahinler, güneyi gösteren demir kepçeli ilkel pusulayı yapar.

1269 – Fransız bilgin Pierre de Maricourt (Maricourtlu Peter) manyetik çekme, itme ve kutupların temel yasalarını ortaya koyar.

1824 – Fransız matematikçi Siméon Denis Poisson, manyetik bir alandaki kuvvetleri modeller.

1940’lar – Amerikalı fizikçi Walter M. Elsasser Yer’in manyetik alanını, gezegen dönerken dış çekirdeğindeki demir türbülansına bağlar.

1958 – Explorer 1 uzay aracı Yer’in manyetik alanının uzaya uzandığını gösterir.

Nicolaus Copernicus’un göksel yörüngeler üzerine 1543’te yayımlanan eseri, Güneş-merkezli bir Evren modeli için inandırıcı bir gerekçe sunduğu halde, sistemin önemli sorunları vardı. Göksel cisimlerin kristal kürelere takılı olduğuna dair eski düşüncelerden kurtulamayan Copernicus, gezegenlerin Güneş’in yörüngesinde kusursuz dairesel bir yol izlediğini söyledi ve düzensizliklerini açıklamak için modeline çeşitli karmaşıklıklar sokmak zorunda kaldı.

Nicolaus Copernicus

– Bir takımyıldızda yeni bir yıldızın doğuşu, gezegenlerin ötesindeki göklerin değişmez olmadığını gösterir.

Kuyrukluyıldız gözlemleri, gezegenlerin arasından yörüngelerini keserek geçtiklerini gösterir.

– Bu durum, göksel cisimlerin sabit göksel kürelere bağlı olmadıklarını gösterir.

– Gezegenler kürelere sabitlenmemişse, Güneş’in etrafında eliptik bir yörünge gezegenlerin gözlemlenen hareketini en iyi açıklar.

Her gezegenin yörüngesi bir elipstir.

Süpernova ve Kuyrukluyıldızlar

16. yüzyılın ikinci yarısında Danimarkalı soylu Tycho Brahe (1546 – 1601), sorunları çözmede yaşamsal oldukları anlaşılacak gözlemler yaptı. 1572’de Cassiopeia takımyıldızında görülen parlak bir süpernova patlaması, gezegenlerin ötesinde Evren’in değişmez olduğu düşüncesini zayıflattı. 1577’de Brahe, bir kuyrukluyıldızın hareketini çizdi. Kuyrukluyıldızların, Ay’dan daha yakın oldukları sanılmıştı; ama Brahe’nin gözlemleri, kuyrukluyıldızın Ay’ın epeyce ötesinde olması gerektiğini ve aslında gezegenlerin arasında dolaştığını gösterdi. Bu kanıt, “göksel küreler” düşüncesini bir darbeyle yerle bir etti. Bununla birlikte Brahe, Yer-merkezli modelinde dairesel yörüngeler düşüncesine bağlı kaldı.

Tycho Brahe

1597’de Brahe Prag’a davet edildive son yıllarını orada, İmparator II. Rudolph’un imparatorluk matematikçisi olarak geçirdi. Ölümünden sonra Brahe’nin çalışmalarını devam ettiren Alman astrolog Johannes Kepler, burada ona katıldı.

Dairelerden Kopma

Kepler, Brahe’nin gözlemlerinden yola çıkarak Mars için yeni bir yörüngeyi hesaplamaya zaten başlamış ve o sırada yörüngenin daire değil, daha çok oval (yumurta seklinde) olması gerektiği sonucuna varmıştı. Kepler oval yörüngeli güneş-merkezli bir model formüle etti; ama gözlem verilerine hala uygun değildi. 1605’te Mars’ın güney etrafındaki yörüngesinin elips – iki odak noktasından biri Güneş olan “gerilmiş bir daire” – olması gerektiği sonucuna vardı. 1609’da Astronomia Nova’sında (Yeni Astronomi) gezegen hareketinin iki yasasını açıkladı. Birinci yasaya göre, her gezegenin yörüngesi bir elipstir. İkincisine göre, bir gezegeni Güneş’e birleştiren doğru parçası eşit zaman dilimlerinde eşit alanlar tarar. Yani, gezegenlerin hızı Güneş’e yaklaştıkça artar. 1619’da üçüncü bir yasa, bir gezegen yılının Güneş’ten uzaklığıyla ilişkisini tarif etti: Bir gezegenin yörüngede dolanma süresinin (yılının) karesi, Güneş’ten uzaklığının üçüncü kuvvetiyle orantılıdır. Yani, Güneş’ten uzaklığı başka bir gezegenin uzaklığının iki katı olan bir gezegenin, yaklaşık üç kat uzun bir yılı alacaktır.

Kepler

Gezegenleri yörüngede tutan kuvvetin doğası bilinmiyordu. Kepler, manyetik kuvvet olduğuna inanmaktaydı, ama Newton 1687’de kütleçekim olduğunu gösterecekti.

Kepler’in yasalarına göre gezegenler Güneş’in etrafında eliptik bir yörüngede dolaşır ve elipsin iki odak noktasından biri Güneş’tir. Verili bir t zamanında gezegenleri Güneş’e birleştiren bir doğru parçası elipste eşit alanlar tarar.
Johannes Kepler 1

Johannes Kepler Kimdir?

Güney Almanya’da Stuttgart’a yakın Weil der Stadt kentinde 1571’de doğan Johannes Kepler, küçük bir çocukken 1577’nin Büyük Kuyrukluyıldızına tanık oldu ve gökyüzüne hayranlığı böyle başladı. Tübingen Üniversitesinde okurken, parlak bir matematikçi ve astrolog olarak ün kazandı. Zamanın önde gelen astronomlarıyla mektuplaştı; bunların arasında Tycho Brahe de vardı ve 1600’de Prag’a gidip Brahe’nin öğrencisi ve akademik varisi oldu. Brahe’nin 1601’de ölümünden sonra Kepler İmparatorluk Matematikçisi görevini üstlendi ve Brahe’nin üzerinde çalıştığı Rudolphine Tables’i tamamlaması istendi. Bu çalışmayı Avusturya’da, 1612’den 1630’da ölene kadar çalıştığı Linz’de tamamladı.

Rudolphine Tables

Önemli Eserleri

1596 – The Cosmic Mystery (Evrenin Gizemi)
1609 – Astronomia Nova (Yeni Gökbilim)
1619 – The Harmony of the World (Dünyanın Uyumu)
1627 – Rudolphine Tables (Rudolf Cetvelleri)

Gezegenlerin Yörüngeleri Hakkında Önemli Gelişmeler

MS 150 – İskenderiyeli Ptolemaios, Yer’in merkezde olduğu ve Güneş’in, Ay’ın, gezegenlerin ve yıldızların sabit göksel küreler üzerinde dairesel yörüngelerde Yer’in etrafında döndüğü varsayımına dayanan bir Evren modeli olan Almagest’i yayınlar.

16.yüzyıl – Güneş-merkezli bir evrenbilim fikri, Nicolaus Copernicus’un düşünceleriyle taraftar bulmaya başlar.

1639 – Jeremiah Horrocks, Kepler’in düşüncelerini kullanıp, Venüs’ün Güneş karşısında geçişini kestirir ve görür.

1687 – Isaac Newton’ın hareket ve çekim yasaları, Kepler’in yasalarına yol açan fiziksel ilkeleri açıklar.

Erken tarihi boyunca Batı düşüncesini, her şeyin merkezine Yeri yerleştiren bir Evren düşüncesi şekillendirdi. Anlaşılan bu “yer-merkezli” model, başlangıçta güncelik gözlemlere ve sağduyuya dayanmaktaydı. Üzerinde durduğumuz zeminin herhangi bir hareketini hissetmiyoruz ve gezegenimizin de hareket ettiğine ilişkin gözlemsel bir kanıt yok gibi görünüyordu. Kuşkusuz en basit açıklama şudu: Güneş, Ay, gezegenler ve yıldızlar farklı hızlarda Yerin etrafında dönüyorlardı. Bu sistem ilkçağ dünyasında yaygın kabul görmüş ve MÖ 4. yüzyılda Platon’un ve Aristoteles’in eserleriyle klasik felsefeye iyice yerleşmiş gibi görünüyor.

Bununla birlikte, antik Yunanlılar gezegenlerin hareketlerini ölçünce, yer-merkezli sisteminin sorunları olduğu anlaşıldı. Bilinen gezegenlerin – gökyüzünde dolaşan 5 ışık – yörüngeleri karmaşık yollar izliyordu. Merkür ve Venüs her zaman sabah ve akşam gökyüzünde görülmekte, Güneş’in etrafında dar halkaları tarif etmekteydi. Bu arada Mars, Jüpiter ve Satürn’ün dönüşü sırasıyla 780 gün, 12 yıl ve 30 yıl alıyordu; yavaşladıkları ve hareketlerinin genel yönünü geçici olarak tersine çevirdikleri “geri hareket” halkaları hareketlerini karışık hale getirmekteydi.

sistemler

Ptolemaios Sistemi

Yunan astronomlar bu karışılıkları açıklamak için ilmek düşüncesini devreye soktu, gezegenler dairesel “alt-yörüngeler”de dönmekteydi; alt-yörüngelerin merkezi “eksen” noktaları ise Güneş’in etrafında hareket etmekteydi. Bu sistemi en iyi MS 2. yüzyılda İskenderiyeli astronomi coğrafyacı Ptolemaios geliştirdi.

Ne var ki, klasik dünyada bile fikir ayrılıkları vardı. Örneğin Yunan düşünür Samoslu Aristarkhos, MÖ 3. yüzyılda trigonometrik ölçümleri kullanarak Güneş’in ve Ay’ın göreli uzaklıklarını hesapladı. Güneş’in büyük olduğunu anladı ve bu durum, kozmosun hareketinin eksen noktasının Güneş olmasının daha olası olduğunu öne sürmesine ilham kaynağı oldu.

Ptolemaios sistemi sonunda rakip teorilere yenildi ve bunun çok kapsamlı içerimleri oldu. Roma İmparatorluğu sonraki yüzyıllarda küçülürken, Hristiyan Kilise imparatorluğun varsayımlarının çoğunu miras aldı. Her şeyin merkezinde Yerin bulunduğu ve Yer üzerindeki hakimiyetiyle insanın Tanrı’nın en üstün yaratığı olduğu düşüncesi Hristiyanlığın temel akidelerinden biri haline geldi ve 16. yüzyıla kadar Avrupa’da egemen oldu.

Ama bu, astronominin Ptolemaios’tan sonra 500 yıl hiç gelişmediği anlamına gelmez. Gezegenlerin hareketlerini doğru bir biçimde öngörme yeteneği yalnızca bilimsel ve felsefi bir bilmece değildi, astrolojinin hurafeleri sayesinde sözde pratik amaçları da vardı. Her inançta yıldız gözlemcilerinin, gezegenlerin devinimlerini hep daha doğru ölçmeye çalışmaları için haklı nedenleri vardı.

Ptolemaios’un evren modelinde Yer merkezde hareketsizdir; Güneş, ay ve bilinen beş gezegen Yer’in etrafında dairesel yörüngelerde döner. Ptolemaios, yörüngeleri gözlemlere uygun hale getirmek için, her gezegenin hareketine daha küçük ilmekler ekledi.
Ptolemaios sistemi

Arap Alimliği

Birinci binyılın son yüzyılları, Arap biliminin ilk büyük çiçeklenmesine denk geldi. 7 yüzyıldan itibaren İslamın Ortadoğu’ya ve Kuzey Afrika’ya hızlı yayılışı Arap düşünürleri, Ptolemaios ve diğerlerinin astronomiyle ilgili yazdıkları da dahil, klasik metinlerle ilişkiye soktu.

Konum astronomisi pratiği – gök cisimlerinin konumlarını hesaplama – İslami, Yahudi ve Hristiyan düşüncenin dinamik bir potası haline gelen İspanya’da doruğuna ulaştı. 13. yüzyılın sonunda Kastilya Kralı X. Alfonso, yeni gözlemleri yüzyılların İslami kayıtlarıyla birleştirip Ptolemaios sistemine yeni bir kesinlik kazandıran ve 17. yüzyılın başına kadar gezegenlerin konumunu hesaplamak için kullanılacak verileri sağlayan Alfonso Cetvelleri’nin hazırlanmasına destek oldu.

Ptolemaios’u Sorgulamak

Ne var ki, bu noktada Ptolemaios modeli saçmalik derecesinde karışıklaşıyordu; öngörüyü gözleme uydurmak için daha fazla ilmekler eklendi. 1377’de Fransız filozof, Lisieux Piskoposu Nicole Oresme, Livre de Ciel et du Monde‘da (Göğün ve Yerin Kitabı) bu sorunu kökten ele aldı. Yer’in durağan olduğunun gözlemsel katının olmadığını gösterdi ve hareket halinde olmadığını varsaymak için hiçbir neden olmadığını savundu. Yine de, Ptolemaios sisteminin kanıtlarını yok etmesine rağmen, Oresme hareket eden bir Yer’e inanmadığını söyledi.

Livre de Ciel et du Monde

16. yüzyılın başına gelindiğinde durum çok farklı olmuştu Rönesans’in ve Protestan Reformasyonun gücü, çok sayıda eski dinsel dogmanın sorgulanmasını sağladı Warmia eyaletinden Polonyalı Katolik Nicolaus Copernicus, Evrenin merkezini Yer’den Güneş’e kaydıran ilk modern güneş-merkezli teoriyi öne sürdü.

Commentariolus

Copernicus düşüncelerini ilk kez 1514 civarinda arkadaşlar arasında elden ele dolaşan ve Commentariolus olarak bilinen küçük bir kitapçıkta yayımladı. Teorisi özünde Aristarkhos’un önerdiği sisteme benzer ve önceki sistemin birçok başarısızlığının üstesinden geldiği halde, Ptolemaios düşüncesinin bazı dayanaklarına bağlı kaldı, en önemlisi de, gök cisimlerinin yörüngesinin, kusursuz bir dairesel hareketle dönen kristalin küreye binili olduğu düşüncesi. Sonuç olarak Copernicus, yörüngelerinin belli bölümlerinde gezegen devinimlerinin hızını düzenlemek için kendi “ilmeklerini” devreye sokmak zorunda kaldı. Modelinin önemli bir içerimi, Evren’in boyutun çok büyük ölçüde büyütmesiydi. Yer Güneş’in etrafında dönüyorsa, değişen bakış noktamızın neden olduğu paralaks etkileriyle kendini ele vermelidir: Yıldızlar yıl boyunca gökyüzünde ileri geri yer değiştirir gibi görünmelidir. Böyle olmadıkları için, gerçekten de çok uzakta olmalılar.

paralaks etkisi
Yer Güneş’in etrafında dönerken, farklı uzaklıklarda yıldızların görünen konumu, paralaks denilen bir etki nedeniyle değişir. Yıldızlar çok uzak oldukları için, etki çok küçüktür ve ancak teleskop kullanılarak fark edilebilir.

Çok geçmeden Copernicus modelinin, eski Ptolemaios sisteminin düzeltilmiş bir şeklinden çok daha doğru olduğu anlaşıldı ve haber bütün Avrupa’da entelektüel çevrelere yayıldı. Duyuru Roma’ya bile ulaştı; popüler inancın aksine, bazi Katolik çevrelerde model başlangıçta iyi karşılandı. Yeni model, Alman matematikçi Georg Joachim Rheticus’un Warmia’ya gidip 1539’dan itibaren Copernicus’un öğrencisi ve asistanı olmaya yetecek kadar bir heyecan yarattı. Copernicus sisteminin elden ele dolaşan ilk anlatımı Narratio Prima’yı 1540’ta yayımlayan Rheticus’tu. Rheticus yaşlı papazdan eserinin tamamını yayımlamasını istedi. Bu Copernicus’un yıllardır düşündüğü, ama ancak 1543’te ölüm Copernicus döşeğindeyken razı olduğu bir şeydi.

Narratio Prima

Matematiksel Araç

Ölümünden sonra yayımlanan De Revolutionibus Orbium Coelestium (Göksel Kürelerin Dönüşleri Üzerine) Yerin hareket halinde olduğu önel Kutsal Kitabın birçok pasajıyla doğrudan çelişmesine ve bu nedenle hem Katolik hem Protestan teologlar tarafından sapkın sayılmasına rağmen, başlangıçta öfkeyle karşılanmadı. Konuyu geçiştirmek için, güneş-merkezli modelin yalnızca matematiksel bir kestirim aleti olduğunu, fiziksel Evrenin bir tasviri olmadığını açıklayan bir önsöz eklenmişti. Oysa Copernicus sağken böyle bir çekince göstermemişti. Sapkın içerimlerine rağmen Copernicus modeli, Papa XIII. Gregorius’un 1582’de başlattığı büyük takvim reformunun gerektirdiği hesaplamalar için kullanıldı.

De Revolutionibus Orbium Coelestium

Ne var ki, modelin öngörü doğruluğuyla ilgili yeni sorunlar hemen ortaya çıkmaya başladı; çünkü Danimarkalı astronom Tycho Brahe’nin (1541-1601) titiz gözlemleri, Copernicus modelinin gezegen devinimlerini yeterince doğru tarif etmediğini gösterdi. Brahe, bu çelişkileri kendine ait olan bir modelle çözmeye çalıştı; onun modelinde gezegenler Güneş’in etrafında dolaşıyordu, ama Güneş ve ay Yerin etrafındaki yörüngede kalıyordu. Gerçek çözümü – eliptik yörünge çözümü – onun öğrencisi Johannes Kepler bulacaktı.

Johannes Kepler

60 yıl sonra Copernicusçuluk, büyük ölçüde İtalyan bilim insanı Galileo Galilei etrafında dönen anlaşmazlık sayesinde, Kilise Reformasyonunun Avrupa’da neden olduğu bölünmenin gerçek simgesi olacaktı. Galileo’nun 1610’da Venüs’ün sergilediği evrelere ve Jüpiter’in yörüngesinde uyduların varlığına ilişkin gözlemleri, onu gün-merkezli teorinin doğru olduğuna inandırdı ve Katolik İtalya’nın kalbinden bu teoriye verdiği ateşli destek, İki Büyük Dünya Sistemi Üzerine Konuşmalar‘da (1632) ifade edildi. Bu durum Galileo’nun papalıkla çatışmasına yol açtı ve bunun bir sonucu, De Revolutionibus’taki tartışmalı pasajların geriye dönük sansürlenmesi oldu. Bu yasak iki yüzyıldan fazla bir süre kaldırılmayacaktı.

İki Büyük Dünya Sistemi Üzerine Konuşmalar

Nicolaus Copernicus Kimdir?

1473’te Polonya’nın Torun kentinde doğan Nicolaus Copernicus, zengin bir tüccarın dört çocuğunun en küçüğüydü. Nicolaus 10 yaşındayken babası öldü. Amcası onu kanatlarının altına aldı ve Krakow Üniversitesinde eğitimine göz kulan oldu. Birkaç yıl İtalya’da tıp ve hukuk okudu: 1503’te Polonya’ya dönüp, artık Warmia Prens-Piskoposu olan amcasının yönetimindeki papazlara katıldı.

Copernicus hem dil hem matematik üstadıydı; çok sayıda önemli eser çevirdi ve kendi astronomi teorileri üzerinde çalışırken, aynı zamanda ekonomiye ilişkin düşünceler de geliştirdi. De Revolutionibus’ta ana hatlarını çizdiği teori matematiksel karmaşıklığıyla ürkütücüydü; bu yüzden birçok kişi önemini kabul etmesine rağmen, pratik günlük kullanım için astronomlar tarafından pek benimsenmedi.

Önemli Eserleri:

1514 – Commentariolus
1543 – De Revolutionibus Orbium Coelestium (Göksel Kürelerin Dönüşleri Üzerine)

Evren Hakkında Tarihi Gelişmeler

MÖ 3. yüzyıl- Kum Cetveli adlı bir eserde Arşimet, Evren’in sanılandan daha büyük olduğunu ve merkezinde Güneş bulunduğunu öne süren Samoslu Aristarkhos’ın düşüncelerini aktarır.

MS 150 – İskenderiyeli Ptolemaios matematiği kullanarak, yer-merkezli bir Evren modeli tasvir eder.

1609 – Johannes Kepler, eliptik yörüngeleri önererek gün-merkezli Güneş Sistemi modelindeki belirgin çelişkileri çözer.

1610 – Galileo Jüpiter’in uydularını gözlemledikten sonra, Copernicus’un haklı olduğunu inanır.

İslami Altın Çağ, bilimin ve sanatın büyük gelişme kaydettiği bir dönemdi. 8. yüzyılın ortasında Abbasi Halifeliğinin başkenti Bağdat’ta başladı ve yaklaşık 500 yıl sürdü. Deney yapmanın ve modern bilimsel yöntemin temellerini attı. Aynı dönemde Avrupa’da, bilimsel düşüncesinin dinsel doğmanın sınırlamalarının üstesinden gelmesine daha birkaç yüzyıl vardı.

Aristoteles

Tehlikeli Düşünme

Yüzyıllarca Katolik Kilisenin evren görüşü Aristoteles’in düşüncesine dayandırıldı; buna göre yer, büyün gök cisimlerinin yörüngesel merkezindeydi. Ardından, 1532 civarında, Polonyalı hekim Nicolaus Copernicus karmaşık matematiğiyle yıllarca uğraştıktan sonra, merkezinde Güneş olan sapkın evren modelini tamamladı. Sapkınlığın farkında olan Copernicus, dikkatli davranıp bunun yalnızca matematiksel bir model olduğunu ifade etti ve ölüm eşiğine gelinceye kadar bekleyip ondan sonra yayımladı; ama Copernicus’un modeli hızla taraftar kazandı. Alman astrolog Johannes Kepler, Felemenkli hocası Tycho Brahe’nin gözlemlerini kullanarak Copernicus’un teorisini geliştirdi ve Mars’ın, dolayısıyla diğer gezegenlerin yörüngelerinin elips oluğunu hesapladı. Gelişmiş teleskoplar İtalyan bilgin Galileo Galilei’nin 1610’da Jüpiter’in dört uydusunu saptamasına olanak verdi. Yeni evrenbilimin açıklayıcılık gücü inkar edilemez oluyordu.

Galileo Galilei

Galileo düşen nesnelerin fiziğini araştırarak ve etkili bir zaman sayacı olarak sarkacı tasarlayarak bilimsel deneyin gücünü de gösterdi. Felemenkli Christiaan Huygens, Galileo’nun sarkacını kullanarak 1657’de ilk sarkaçlı saati yaptı. İngiliz filozof Francis Bacon bilimsel yöntemle ilgili düşüncelerini ortaya koyan iki kitap yazarak, deneye, gözleme ve ölçmeye dayanan modern bilimin teorik temelini geliştirdi.

Isaac Newton

Peşinen gürül gürül yeni keşifler geldi. Robert Boyle bir hava pompası kullanıp havanın özelliklerini araştırırken, Huygens ve İngiliz fizikçi Isaac Newton ışığın nasıl yol aldığına ilişkin karşıt teorilerle ortaya çıkıp optik bilimini pekiştirdiler. Danimarkalı astronom Ole Rømer, Jüpiter uydularının tutulma cetvellerinde tutarsızlık fark etti ve bunları kullanarak, ışık hızının yaklaşık bir değerini hesapladı. Rømer’in vatandaşı Piskopos Nicolas Steno eski bilgilerin çoğuna kuşkuyla bakıyordu ve hem anatomi hem jeoloji alanında kendi düşüncelerini geliştirdi. Stratigrafinin (kayaç katmanlarının incelenmesi) ilkelerini belirleyip, jeoloji için yeni bir bilimsel temel kurdu.

Robert Hooke

Mikro Dünyalar

17. yüzyıl boyunca teknolojideki gelişmeler en küçük ölçekte bilimsel keşiflere güç verdi. 1600’lerin başında Felemenkli gözlükçüler ilk mikroskopları geliştirdi; daha sonra Robert Hooke kendi mikroskobunu yaptı ve bulgularının güzel resimlerini çizerek, ilk kez pire gibi küçük böceklerin karışık yapısını açığa vurdu. Olasılıkla Hooke’un resimlerinden esinlenen Felemenkli manifaturacı Antonie van Leeuwenhoek yüzlerce mikroskop yaptı ve su gibi, daha önceden kimsenin bakmayı akıl etmediği yerlerde küçük yaşam formları buldu. Leeuwenhoek, “hayvancık” dediği protist ve bakteri gibi tek hücreli yaşam formlarını keşfetmişti. Bulgularını British Royal Society’ye (İngiliz Kraliyet Derneği) rapor edince, gerçekten böyle şeyler görüp görmediğini doğrulamak için üç rahip gönderildi. Felemenkli mikroskopçı Jan Swammerdam, yumurta, larva, pupa ve erişkinin, Tanrının yarattığı ayrı hayvanlar değil, bir böceğin gelişim evreleri olduğunu gösterdi. Aristoteles’e kadar geri giden eski düşünceler, bu yeni buluşlarla birlikte bir tarafa atıldı. Bu arada İngiliz biyolog John Ray, ilk ciddi sistematik sınıflandırma girişimine işaret eden büyük bir bitki ansiklopedisi hazırladı.

1 Historia Plantarum

Matematiksel Analiz

Aydınlanmanın habercisi olan bu keşifler, modern bilimsel astronomi, kimya, jeoloji, fizik ve biyoloji disiplinlerinin temelini attı. Yüzyılın taçlandırıcı başarısı, Newton’ın hareket ve çekim yasalarını ortaya koyan bilimsel eseri Philosophiae Naturalis Principia Mathematica ile geldi. Newton fiziği iki yüzyıldan fazla bir süre fiziksel dünyanın en iyi tasviri olarak kalacaktı ve Newton ile Gottfried Wilhelm Leibniz’in birbirinden bağımsız geliştirdiği analitik hesaplama teknikleriyle birlikte, gelecekte bilimsel çalışmalara güçlü bir araç sağlayacaktı.

newton

Bilimsel Devrim 1400 – 1700

1543 – Nicolaus Copernicus gün-merkezli bir evrenin ana hatlarını çizen De Revolutionibus Orbium Coelestium‘u (Göksel Kürelerin Devinimleri Üzerine) yayımlar.

De Revolutionibus Orbium Coelestium

1600 – Astronom William Gilbert, manyetizma üzerine bilimsel bir eser olan De Magnete‘yi yayımlar ve yerin mıknatıs olduğunu öne sürer.

1609 – Johannes Kepler, Mars’ın eliptik bir yörüngesi olduğunu öne sürer.

1610 – Galileo Jüpiter’in uydularını gözlemler ve yamaçlardan yuvarladığı toplarla deney yapar.

1620’ler – Francis Bacon bilimsel yöntemin ana hatlarını çizen Novum Organum Scientiarum ve The New Atlantis‘i yayımlar.

1639 – Jeremiah Horrocks Venüs’ün geçişini gözlemler.

1643 – Evangelista Torricelli barometreyi icat eder.

1660’lar – Robert Boyle hava basıncını araştıran New Experiments Physico-Mechanical, Touching the Spring of the Air and its Effects‘i yayımlar.

1665 – Micrographia‘da Robert Hooke dünyayı pirelerin, arıların ve mantarların anatomisiyle tanıştırır.

micrographia

1669 – Nicolas Steno, katıların içindeki katıları (fosiller ve kristaller) yazar.

1669 – Jan Swammerdam, Historia Insectorum Generalis‘te böceklerin evreler halinde nasıl geliştiğini tarif eder.

1670’ler – Antonie van Leeuwenhoek basit mikroskoplarla tek hücreli organizmaları, spermi, hatta bakterileri gözlemler.

1676 – Ole Rømer, Jüpiter’in uydularını kullanarak ışığın belirli bir hızı olduğunu gösterir.

1678 – Christiaan Huygens, daha sonra Isaac Newton’ın parçacık olarak ışık düşüncesiyle karşılaştırılacak ışığın dalga teorisini ilan eder.

1686 – John Ray bitki krallığının ansiklopedisi Historia Plantarum‘u yayımlar.

1687 – Isaac Newton, Philosophiae Naturalis Principia Mathematica‘da kendi hareket yasalarının ana hatlarını çizer.

Philosophiae Naturalis Principia Mathematica

Arap astronom ve matematikçi İbn-i Heysem İslam uygarlığının altın çağında Bağdat’ta yaşadı ve dünyanın ilk deneysel bilim insanıydı. Daha önceki Yunan ve İranlı düşünürler doğal dünyayı çeşitli biçimlerde açıklarken, vardıkları sonuçlara fiziksel deneylerle değil, soyut akıl yürütmeyle ulaşmışlardı. Gelişen bir İslami merak ve araştırma kültürü içinde çalışan İbn-i Heysem, şimdi bilimsel dediğimiz yöntemi kullanan ilk kişiydi: Hipotezler öne sürmek için ve bunları yöntemli bir biçimde deneylerle test etmek. Onun da gözlemlediği gibi “Hakikati arayan kişi, eskilerin yazdıklarını okuyan ve…. onlara itimat eden kişi değil, aksine onlara olan inancından şüphe duyan ve onlardan aldıklarını sorgulayan kişidir, muhakemeye ve ispata teslim olan kişidir.”

İbn i Heysem

Görmeyi Anlamak

İbn-i Heysem, bugün optik biliminin kurucusu olarak hatırlanır. En önemli eserleri gözün yapısına ve görme sürecine ilişkin incelemelerdi. Yunan bilginler Öklid ve daha sonra Ptolemaios (Batlamyus), görmenin gözden çıkan ve kişinin baktığı şeyden seken “ışınlardan” kaynaklandığına inandılar. İbn-i Heysem gölgeleri ve yansımayı gözlemleyerek, ışığın nesnelerden sektiği ve düz çizgiler halinde gözlerimize girdiğini gösterdi. Görme, en azından retinaya ulaşana kadar, aktif değil, daha çok pasif bir olguydu. Fark etti ki, “her hangi bir ışıkla aydınlatılan her renki cismin her noktasından, o noktadan çizilebilir her düz hat boyunca ışık ve renk çıkar.” Şeyleri görmek için, ışığın içeri girmesi için gözlerimizi açmamız yeter. Yapabilse bile, gözün ışık göndermesine gerek yoktur.

1- Güneş ışığı nesnelere çarpıp seker.

2- Işık düz çizgiler halinde seker.

3- Görmek için gözlerimizi açmaktan başka bir şeye ihtiyacımız yoktur.

4- Işık doğru çizgiler halinde gözümüze girer.

Görmeyi Anlamak

İbn-i Heysem, ters bir görüntüyü bir perdeye yansıtan optik bir aygıt olan karanlık odanın ilk bilimsel tarifini verdi.

İbn-i Heysem boğa gözleriyle yaptığı deneylerden, ışığın küçük bir delikten (gözbebeği) girdiğini ve bir mercek tarafından, gözün arka tarafında duyarlı bir yüzeye odaklandığını da anladı. Bununla birlikte, gözü bir mercek kabul etmesine rağmen, gözün ya da beynin bir görüntüyü nasıl oluşturduğunu açıklamadı.

Işık Deneyleri

İbn-i Heysem’in yedi ciltlik anıtsal eseri Kitab el-Menazır’ı ışık teorisiyle görme teorisini açıklar. 650 yıl sonra Isaac Newton’ın Principia’ı yayımlanana kadar, konusunda ana otorite olarak kaldı. Kitap ışık ile merceklerin etkileşimini araştırır ve ışığın kırılım (yön değiştirme) olgusu tarif eder – Hollandalı bilim insanı Willebrord van Roijen Snell’in kırılım yasasından 700 yıl önce. Işığın atmosferde kırılmasını da inceler ve gölgeleri, gökkuşağını ve tutulmaları tasvir eder. Kitab el-Menazır, Avrupa’da Rönesans döneminde İbn-i Heysem’in bilimsel yöntemini canlandıran bilim insanlarından biri olan Francis Bacon da aralarında olmak üzere, daha sonra Batılı bilim insanlarını büyük ölçüde etkiledi.

Kitab el Menazır

İbn-i Heysem Kimdir?

Ebu Ali el-Hasan İbnü’l-Heysem (Batıda Alhazen olarak tanınır) Basra’da doğdu ve Bağdat’ta eğitim gördü. Gençken Basra’da devlet memurluğu verildi ama kısa sürede sıkıldı. Bir rivayete göre, Mısır’da Bil’in her yıl taşmasından kaynaklanan sorunları işitince Halife el-Hekim’e bir mektup yazıp, taşkını düzenlemek için bir baraj yapmayı teklif etti ve Kahire’de el üstünde karşılandı. Ne var ki, kentin güneyine gidip ırmağın büyüklüğünü görünce – Asvan’da genişliği 1.6 kilometre – eldeki teknolojiyle işin imkansız olduğunu anladı. Halifenin gazabından kurtulmak için, deliliğe vurdu ve 12 yıl ev hapsinde kaldı. O sürede en önemli eserini yazdı.

Önemli Eserleri:

1011-21 – Kitab el-Menazır
y.1030 – Işık Üzerine Bir Konuşma
y.1030 – Ay’ın Işığı Üzerine

gözün yapısı

Görme Hakkında Tarihi Gelişmeler

MÖ 350: Aristoteles, görmenin bir nesneden göze giren fiziksel formlardan kaynaklandığını savunur.

MÖ 300: Öklid, gözün sekip göze geri gelen ışınlar gönderdiğini savunur.

980: Ebu Sehl ışığın kırılmasını araştırır ve kırılım yasalarını türetir.

1240: İngiliz piskopos Robert Grosseteste, optik deneylerinde geometriyi kullanır ve rengin doğasını doğru bir biçimde tarif eder.

1604: Johannes Kepler’in retinal görüntü teorisi, doğrudan İbn-i Heysem’in eserine dayanır.

1620: İbn-i Heysem’in düşünceleri, deneye dayalı bilimsel bir yöntemi savunan Francis Bacon’ı etkiler.

MÖ 140 civarında, olasılıkla antik dünyanın en iyi astronomu olan Yunan astronom Hipparkhos, 850 kadar yıldızdan oluşan bir katalog hazırladı. Güneş’in ve Ay’ın hareketlerini ve tutulmaların tarihini öngörmenin yolunu da açıkladı. MS 150 civarında İskenderiyeli Ptolemaios eseri Almagest’te 1000 yıldız ve 42 takımyıldız listeledi. Bu eserin büyük bölümü, Hipparkhos’un yazdıklarının güncellenmiş bir versiyonuydu ama daha kullanışlı bir biçimde. Batıda Almagest, ortaçağ boyunca standart astronomi metni oldu. Cetvelleri, Güneş’in ve Ay’ın, gezegenlerin ve önemli yıldızların gelecekteki konumlarını, hatta ay ve güneş tutulmalarını hesaplamak için gerekli bütün bilgileri kapsamaktaydı.

Almagest

MS 120’de Çinli bilge Zhang Heng; Evrenin Ruhsal Bünyesi başlıklı bir eser çıkardı. Bu eserde “-Gök bir tavuğun yumurtasına benzer ve bir arbalet topu gibi yuvarlaktır; Yer ise bir yumurtanın sarısı gibidir, merkezde tek başına yatar. Gök büyüktür, Yer küçük.” diyordu. Bu, Hipparkhos ve Ptolemaios’ta olduğu gibi, merkezde Yer olan bir Evren’di. Zhang 2500 “parlak” yıldız ve 124 takımyıldız katalogları: “-Çok küçük yıldızlardan 11250 tane var.” diye ekledi.

Ay ve Gezegen Tutulmaları

Zhang tutulmalara hayrandı. Şöyle yazmış: “-Güneş ateş gibidir ve Ay da su gibi. Ateş ışık saçar, su ışığı yansıtır. Bu yüzden Ay’ın parlaklığı güneşin ışımasından kaynaklanır ve Ay’ın karanlığı, güneşin ışığının engellenmesi nedeniyledir. Güneş’e bakan taraf tamamen aydınlıktır, uzak olan taraf ise karanlıktır.” Zhang, araya Yer girdiği için Güneş tutulmasını da tarif etti. Gezegenlerin de “su gibi” ışığı yansıttığını, bu yüzden onların da tutulduklarını anladı. Benzer bir etki “-Bir gezegende de olunca, buna örtünme diyoruz. Ay, Güneş’in yolundan geçince, o zaman Güneş tutulması olur.”

güneş ve ay

11. yüzyılda başka bir Çinli astronom, Shen Kuo, Zhang’ın çalışmasını önemli bir konuda genişletti. Ay’ın büyümesine ve küçülmesine ilişkin gözlemleriyle gök cisimlerinin küre şeklinde olduğunu kanıtladı.

Zhang Heng Kimdir?

Zhang Heng, Han Hanedanı döneminde şimdi Henan eyaleti denilen yörede Xie kasabasında MS 78’de doğdu. 17 yaşında edebiyat okumak ve yazar olmak için evden ayrıldı. Zhang yirmili yaşlarının sonunda yetenekli bir matematikçi oldu ve İmparator An-ti’nin sarayına çağırıldı; MS 115’te İmparatorun baş astrologu olarak atandı.

Zhang, bilimde hızlı ilerlemelerin olduğu bir zamanda yaşadı. Astronomiyle ilgili çalışmalarının yanı sıra, suyla çalışan halkalı bir küre (gök cisimlerinin modeli) yaptı ve MS 138’de 400 kilometre uzaktaki bir depremi başarılı bir biçimde kaydedene kadar dalga geçilen dünyanın ilk sismometresini icat etti.

Zhang Heng sismograf

Taşıtla geçilen uzaklıkları ölçmek için ilk yol sayacını ve at arabası biçiminde, manyetik olmayan ve güneyi gösteren bir pusula da icat etti. Zhang, zamanın kültürel yaşamına ilişkin canlı içgörüler sunan saygın bir şairdi.

Zhang Heng pusula

Önemli eserleri
MS yaklaşık 120: Evrenin Ruhsal Bünyesi
MS yaklaşık 120: Ling Xian’ın Haritası

Gezegenlerin Şekilleri Hakkında Tarihi Gelişmeler

MÖ 140: Hipparkhos tutulmaları öngörmenin yolunu buluyor.

MS 150: Ptolemaios; Hipparkhos’un çalışmalarını geliştirir ve gök cisimlerinin gelecekteki konumlarını hesaplamak için pratik cetveller çıkarır.

11.Yüzyıl: Shen Kou; Rüya Havuzu Denemeleri’ni yazar. Burada Ay’ın büyümesinden ve küçülmesinden yararlanarak, bütün gök cisimlerinin küre şeklinde olduğunu gösterir.

1543: Nicolaus Copernicus; Göksel Kürelerin Dönüşleri Üzerine’yi yayımlar. Burada gün merkezli bir sistem tasvir eder.

1609: Johannes Kepler; gezegenlerin hareketini, elips şeklinde boşlukta dolaşan cisimler olarak açıklar.