Isaac Newton doğduğu sırada, Yer’in ve diğer gezegenlerin Güneş’in etrafında döndüğü gün-merkezli Evren modeli, Güneş, Ay ve gezegenlerin gözlemlenen hareketlerine ilişkin kabul gören açıklamaydı. Bu model yeni değildi; ama Nicolaus Copernicus ömrünün son günlerinde, 1543’te düşüncelerini yayımlayınca, tekrar önem kazanmıştı. Copernicus’un modelinde Ay ve gezegenlerin her biri kendi kristalin küresinde Güneş’in etrafında dönmekteydi; bir dış küre de “sabit” yıldızları tutmaktaydı. Johannes Kepler 1609’da gezegen devinimine ilişkin kendi yasalarını yayımlayınca, bu model aşıldı. Kepler, Copernicus’un kristalin kürelerinden vazgeçti ve gezegenlerin yörüngelerinin elips, her elipsin bir odağının Güneş olduğunu gösterdi. Bir gezegenin hareket ettikçe hızının nasıl değiştiğini de açıkladı.

Isaac Newton

Bütün bu Evren modellerinde eksik olan bir şey vardı: Gezegenlerin neden o şekilde hareket ettiklerini açıklamak. Newton burada devreye girdi. Bir elmayı Yer’in merkezine doğru çeken kuvvetin, gezegenleri Güneş’in etrafında yörüngelerinde tutan kuvvetle aynı olduğunu anladı ve bu kuvvetin mesafeyle birlikte nasıl değiştiğini matematiksel olarak gösterdi. Kullandığı matematik, Newton’ın üç Hareket Yasası ile Evrensel Kütleçekim Yasasını gerektirdi.

newton elma

– Elma neden yana ya da yukarıya değil de, hep aşağıya düşer?

Yer’in merkezine doğru bir çekim olmalı.

– Bu çekim elmanın ötesine, Ay’a kadar uzanabilir mi? Öyleyse, Ay’ın yörüngesini etkiler.

– Gerçekten Ay’ın yörüngesine neden olabilir mi? Bu durumda…

Kütleçekim Evren’deki her şeyi etkiler.

Değişen Düşünceler

Deney yapmadan sonuçlara varan Aristoteles’in düşünceleri bilimsel düşünmeye yüzyıllarca egemen olmuştu. Aristoteles, hareket eden nesnelerin itildikleri sürece harekete devam ettiklerini ve ağır nesnelerin hafif nesnelerden daha hızlı düştüklerini düşünüyordu. Aristoteles’e göre ağır nesneler doğal yerlerine doğru hareket ettikleri için Yer’e düşüyorlardı. Kusursuz olan göksel cisimlerin daireler halinde sabit hızlarda hareket ettiklerini de söylüyordu.

Eylemsizlik İlkesi

Galileo Galilei deneyle ulaşılan farklı bir düşünce kümesiyle ortaya çıktı. Rampalardan aşağı inen topları gözlemledi ve hava direnci en az düzeydeyse, bütün nesnelerin aynı hızda düştüklerini gösterdi. Hareket eden bütün nesnelerin, sürtünme gibi bir kuvvet yavaşlatmadıkça hareket etmeye devam ettikleri sonucuna da vardı. Galileo’nun Eylemsizlik İlkesi, Newton’un Birinci Hareket Yasasının parçası olacaktı. Sürtünme ve hava direnci, gündelik yaşamda karşılaştığımız hareket eden nesneler üzerinde etkili olduğu için, sürtünme kavramı tüm çıplaklığıyla ortada değildir. Galileo, bir şeyi sabit bir hızda hareket ettiren kuvvetin yalnızca sürtünmeye karşı koyması gerektiğini dikkatli deneylerle gösterebildi.

Hareket Yasaları

Newton birçok konuda deneyler yaptı; ama hareketle ilgili yaptığı deneylerin kayıtları yoktur. Ama üç yasası birçok deneyle doğrulandı; ışık hızının altındaki hızlar için doğruluğunu koruyor. Newton birinci yasasını şöyle ifade etti: “Her cisim durumunu değiştirmeye mecbur eden kuvvetler tarafından etkilenmediği sürece, hareketsizlik durumunu ya da doğru bir çizgide tekdüze hareket durumunu korur.” Başka bir deyişle, duran bir nesne ancak bir kuvvet etkilerse hareket etmeye başlar ve hareket eden bir nesne, bir kuvvet etkilemediği sürece, sabit hız yöneyiyle hareket etmeye devam eder. Burada hız yöneyi hareket eden bir nesnenin hem yönünü hem hızını ifade eder. Bu yüzden bir nesne ancak bir kuvvet etki ederse hızını ya da yönünü değiştirir. Önemli olan kuvvet, net kuvvettir. Hareket eden bir arabaya etki eden birçok kuvvet (sürtünmeyi ve hava direncini de kapsayan) ve tekerlekleri hareket ettiren motoru vardır. Arabayı ileri iten kuvvetler arabayı yavaşlatmaya çalışan kuvvetleri dengeliyorsa, net kuvvet yoktur ve araba sabit bir hız yöneyini sürdürür.

hareket yasası

Newton’ın İkinci Yasasına göre bir cismin ivmesi (hız değişimi) etki eden kuvvetin büyüklüğüne bağlıdır ve genellikle F=ma olarak yazılır; burada “F” kuvvet, “m” kütle ve “a” ivmedir. Bu, bir cismin üzerindeki kuvvet ne kadar büyükse ivmesinin o kadar büyük olduğunu gösterir. İvmenin bir cismin kütlesine bağlı olduğunu da gösterir. Verili bir kuvvet için küçük kütleli bir cisim, büyük kütleli bir cisimden daha fazla ivme kazanır.

Roket motorları, Newton’ın Üçüncü Yasasının pratik bir örneğidir. Roket, aşağıya doğru zorlayan bir jet tepkisi üretir. Jet tepkisi, roketi yukarı doğru iten eşit ve karşıt yönde bir kuvvet uygular.

Üçüncü Yasaya göre “her etkinin eşit ve karşıt bir tepkisi vardır.” Yani bütün kuvvetler çiftler halinde vardır: Bir nesne ikinci bir nesnenin üzerine bir kuvvet uygularsa, ikinci nesne birinci nesneye eşzamanlı bir kuvvet uygular ve bu iki kuvvet eşit ve karşıttır. “Etki” terimine rağmen, bunun doğru olması için hareket gerekmez. Bu, Newton’ın kütleçekimle ilgili düşünceleriyle ilişkilidir; çünkü Üçüncü Yasasının bir örnegi, cisimler arasındaki kütleçekimdir. Yalnızca Yer Ay’ı çekmiyor, Ay da aynı kuvvetle Yer’i çekiyor.

kütleçekim

Evrensel Çekim

Newton 1660’ların sonunda, Cambridge’i kasıp kavuran vebadan sakınmak için iki yıllığına Woolsthrope köyüne çekilince kütleçekimi düşünmeye başladı. O sırada birkaç kişi, Güneş’ten gelen çekici bir kuvvet bulunduğunu ve bu kuvvetin büyüklüğünün uzaklığın karesiyle ters orantılı olduğunu öne sürmüştü. Başka bir deyişle, Güneş ile başka bir cisim arasındaki uzaklık iki katına çıkarsa, aralarındaki kuvvet ilk kuvvetin yalnızca dörtte biridir. Ne var ki, bu kuralın Yer gibi büyük bir cismin yüzeyinde geçerli olabileceği bir elmanın ağaçtan düştüğünü gören Newton şu sonucu çıkardı: Elmayı Yer çekiyor olmalı ve elma yere her zaman dik düştüğüne göre, düşüş yönü Yer’in merkezine doğruydu. Bu yüzden Yer ile elma arasındaki çekim kuvveti, Yer’in merkezinden kaynaklanıyormuş gibi hareket etmelidir. Bu düşünceler, Güneş’i ve gezegenleri büyük kütleli küçük noktalar şeklinde ele almanın yolunu açtı. Newton, elmayı düşüren kuvvetin gezegenleri yörüngelerinde tutan kuvvetlerden farklı olduğunu düşünmek için hiçbir neden görmüyordu. Bu nedenle kütleçekim evrensel bir kuvvetti.

Newton’ın kütleçekim teorisi düşen cisimlere uygulanırsa, Yer’in kütlesi M1’dir, düşen nesnenin kütlesi için M2’dir. Bu durumda bir nesnenin kütlesi ne kadar büyükse, onu aşağı çeken kuvvet de o kadar büyüktür. Ne var ki, Newton’ın İkinci Yasasına göre, eğer kuvvet aynıysa daha büyük bir kütle daha küçük bir kütle kadar çabuk ivme kazanmaz. Bu yüzden daha büyük kütlenin ivme kazanması için daha büyük kuvvete ihtiyaç vardır ve işleri karıştıran hava direnci gibi başka kuvvetler olmadığı sürece, bütün nesneler aynı hızda düşer. Hava direnci olmasa, bir çekiç ile bir tüy aynı hızda düşer. – Apollo 15 seferi sırasında bu deneyi Ay’ın yüzeyinde gerçekleştiren astronot Dave Scott’un 1971’de kanıtladığı bir olgu.

Dave Scott

Newton, Philosophiae Naturalis Principia Mathematica’nın erken bir taslağında yörüngeleri açıklamak için bir düşünce deneyi tasvir etti. Çok yüksek bir dağın üzerinde giderek artan hızlarda gülle atışı yapan bir top hayal etti. Ateşlenen güllenin hızı ne kadar yüksekse, gülle o kadar uzakta yere düşer. Yeterince hızlı fırlatılırsa yere düşmez, tekrar dağın tepesine gelinceye kadar Yer’in etrafında yoluna devam eder. Aynı şekilde, doğru hızda yörüngesine fırlatılan bir uydu da Yer’in etrafında dönmeye devam edecektir. Yer’in çekimi uyduya sürekli hız kazandırır. Sabit bir hızda hareket eder, ama yönü sürekli değişiyor, düz bir çizgide uzaya savrulmak yerine gezegenin etrafında dolanır. Bu durumda Yer’in kütleçekimi uydunun hızını değil, yalnızca hız yöneyinin yönünü değiştirir.

Newton düşünce deneyi
Newton’ın düşünce deneyi, yüksek bir dağdan yatay ateşlenen bir topu tasvir etmekteydi. Top güllesini atan kuvvet ne kadar büyükse, o kadar uzağa düşer. Yeterince güçlü atılırsa, gezegenin etrafında dönüp dağa geri döner.

Düşünceleri Yayımlamak

1684’te Robert Hooke, gezegen deviniminin yasalarını keşfettiğini arkadaşları Edmond Halley ve Christopher Wren’e övünerek anlattı. Halley, Newton’un da arkadaşıydı ve bunu ona sordu. Newton sorunu daha önce çözdüğünü, notlarını kaybettiğini söyledi. Halley, Newton’ı çalışmayı yeniden yapmaya teşvik etti ve bunun sonucunda, 1684’te Kraliyet Derneğine gönderilen kısa bir el yazması olan Cisimlerin Bir Yörüngede Devinimi Üzerine’yi çıkardı. Bu tebliğde Newton, Kepler’in tarif ettiği gezegenlerin eliptik deviniminin her şeyi Güneş’e doğru çeken bir kuvvetten kaynaklandığını gösterdi; buradaki kuvvet, cisimler arasındaki mesafeyle ters orantılıydı. Newton üç cilt halinde yayımlanan ve diğer şeylerin yanı sıra Evrensel Kütleçekim Yasası ile Newton’ın Üç Hareket Yasasını da içeren Principia Mathematica’da o çalışmasını genişletti, hareket ve kuvvetle ilgili diğer çalışmalarını da ekledi. Kitaplar Latince yazıldı ve Principia Mathematica’nın üçüncü baskısını esas alan ilk İngilizce çeviri 1729’da yayımlandı.

Principia Mathematica

Hooke’un Newton’ın ışık teorisine yönelttiği eleştiriler nedeniyle Hooke ile Newton’ın arası zaten açıktı. Ne var ki, Newton’ın yayımından sonra, Hooke’un gezegen devinimine ilişkin çalışmalarının çoğu gölgede kaldı. Ama Hooke böyle bir yasayı öne süren tek kişi değildi ve işe yaradığını da kanıtlamamıştı. Newton, kendi Evrensel Kütleçekim Yasasının ve hareket yasalarının gezegenlerin ve kuyrukluyıldızların yörüngelerini açıklamak için matematiksel olarak kullanılabildiğini ve bu açıklamaların gözlemlere uyduğunu göstermişti.

Kuşkulu Kabul

Newton’ın kütleçekimle ilgili düşünceleri her yerde iyi karşılanmadı. Newton’ın kütleçekim kuvvetinin “uzaktan etki”si, nasıl ve neden gerçekleştiğini açıklamanın bir yolu olmadığı için, “okült” bir düşünce olarak görüldü. Newton, kütleçekimin doğası üzerine yorumda bulunmak istemedi. Ona göre ters-kare çekim düşüncesinin gezegen devinimlerini açıklayabildiğini ve dolayısıyla matematiğin doğru olduğunu göstermiş olması yeterliydi. Bununla birlikte, Newton’ın yasaları o kadar çok olguyu açıklıyordu ki, kısa sürede yaygın kabul gördü ve bugün uluslararası kullanılan kuvvet birimi, onun adıyla anılır.

Newton yasaları, 1066’da göründükten sonra Bayeux İşlemesi’nde gösterilen Halley kuyrukluyıldızı gibi gök cisimlerinin yörüngelerini hesaplama aletlerini sağladı.

Denklem Kullanmak

Edmond Halley; Newton’ın denklemlerini kullanarak, 1682’de görülen bir kuyrukluyıldızın yörüngesini hesapladı ve 1531 ile 1607’de gözlemlenen kuyrukluyıldızla aynı olduğunu gösterdi. Bu kuyrukluyıldıza şimdi Halley kuyrukluyıldızı deniliyor. Halley, 1758’de – ölümünden 16 yıl sonra – geri geleceğini başarılı bir biçimde öngördü

Kuyrukluyıldızların Güneş’in etrafında döndüğü ilk kez gösterilmişti. Halley kuyrukluyıldızı her 75-76 yılda bir Yer’in yakınından geçer ve 1066’da Güney İngiltere’de Hastings Savaşı’ndan önce görülen kuyrukluyıldız da oydu.

Denklemler yeni bir gezegenin keşfedilmesinde de kullanıldı. Uranüs Güneş’in yedinci gezegenidir ve 1781’de William Herschel tarafından gezegen olarak tanımlandı. Herschel gezegeni, gece gökyüzünde gözlem yaparken tesadüfen buldu. Daha ileri Uranüs gözlemleri astronomların yörüngesini hesaplamalarına ve gelecek tarihlerde nerede gözlenebileceğini öngören cetveller üretmelerine olanak verdi. Ne var ki, bu öngörüler her zaman doğru çıkmadı ve Uranüs’ün ötesinde kütleçekimle Uranüs’ün yörüngesini etkileyen başka bir gezegen olması gerektiği düşüncesine yol açtı. 1845’e gelindiğinde astronomlar bu sekizinci gezegenin gökyüzünde nerede olması gerektiğini hesaplamıştı ve 1846’da Neptün keşfedildi.

Teorinin Sorunları

Eliptik yörüngeli bir gezegenin güneşe en fazla yaklaştığı noktaya günberi denilir. Güneş’in etrafında dönen yalnızca bir gezegen olsaydı, yörüngesinin günberisi aynı yerde kalırdı. Ne var ki, Güneş Sistemimizdeki bütün gezegenler birbirlerini etkiler, bu yüzden günberiler Güneş’in etrafında yalpalar (döner). Bütün gezegenler gibi Merkür’ ün günberisi de yalpalar, ama yalpalama, Newton denklemleri kullanılarak tam açıklanamaz. Bu, 1859’da bir sorun olarak kabul edildi. 50 yıldan fazla bir süre sonra Albert Einstein’ın Genel Görelilik Teorisi kütleçekimi uzayzaman eğriliğinin bir etkisi olarak tarif etti ve bu teoriye dayanan hesaplamalar, Merkür yörüngesinin gözlemlenen yalpalamasını ve Newton’ın yasalarına bağlı olmayan diğer gözlemleri açıklar.

Genel Görelilik Teorisi
Merkür’ün yörüngesinin yalpalaması (dönme ekseninde değişme), Newton yasalarıyla açıklanamayan ilk olguydu.

Bugün Newton Yasaları

Newton yasaları, “klasik mekanik” denilen şeyin – hareket ve kuvvetin etkilerini hesaplamak için kullanılan bir dizi denklem – temelini oluşturur. Bu yasalar, Einstein’ın görelilik teorilerine dayanan denklemlerle aşılmış olmalarına rağmen, söz konusu hareket ışık hızına kıyasla küçük olduğu sürece iki yasa kümesi hemfikirdir. Bu yüzden, uçakların ve arabaların tasarımında ya da bir gökdelenin bileşenlerinin ne kadar güçlü olması gerektiğini ortaya çıkarmada kullanılan hesaplamalar için, klasik mekaniğin denklemleri hem yeterince doğrudur hem kullanımı daha kolaydır. Newton mekaniği harfi harfine doğru olmayabilir, ama hala yaygın olarak kullanılmaktadır.

newton

Isaac Newton Kimdir?

1642’de Noel Günü doğan Isaac Newton, 1665’te mezun olduğu Cambridge’deki Trinity College’de okumadan önce, Grantham’da okula gitti. Ömrü süresince Newton Cambridge’de matematik profesörü, Kraliyet Darphanesi müdürü, Cambridge Üniversitesinin parlamento temsilcisi ve Kraliyet Derneği başkanı oldu. Newton, Hooke’la anlaşmazlığının yanı sıra, Alman matematikçi Gottfried Leibnitz’le de kalkülüsün geliştirilmesinde öncelik konusunda bir kan davası güttü.

Newton bilimsel çalışmalarına ek olarak, simya araştırmalarına ve Kitabı Mukaddes yorumlarına da epeyce zaman harcadı. İnançlı ama alışılmışın dışında bir Hristiyan olan Newton, üstlendiği bazı görevler gerektirmesine rağmen, rahip olarak atanmaktan sakınmayı başardı.

Kütleçekim Hakkında Tarihsel Gelişmeler

1543 – Nicolaus Copernicus gezegenlerin Yer’in etrafında değil, Güneş’in etrafında döndüklerini öne sürer.

1609 – Johannes Kepler, gezegenlerin Güneş’in etrafında eliptik yörüngelerde serbestçe dolaştıklarını öne sürer.

1610 – Galileo’nun astronomik gözlemleri Copernicus’un görüşlerini destekler.

1846 – Matematikçi Urbain Le Verrier; Newton’ın yasalarını kullanıp Neptün’ün nerede olması gerektiğini hesapladıktan sonra, Johann Gaile gezegeni keşfeder.

1859 – Le Verrier, Newtoncı mekaniğin Merkür’ün yörüngesini açıklanmadığını bildirir.

1915 – Genel görelilik teorisiyle Albert Einstein kütleçekimi, uzay-zaman eğriliği bakımından açıklar.

Modern biyolojiye göre, canlılar yalnızca diğer canlılardan bir üreme süreciyle türeyebilir. Bugün bu görüş tartışma götürmez gibi görünebilir; ama biyolojinin temel ilkelerinin bebeklik evresinde olduğu dönemde, birçok bilim insanı “abiyogenez” denilen bir fikre – yaşamın kendiliğinden üreyebildiği düşüncesine – bağlıydı.

Aristoteles’in çürüyen maddeden canlı organizma çıkabildiğini iddia etmesinden uzun süre sonra, bazıları cansız nesnelerden yaratık yapmayı amaçlayan yöntemlere bile inandı. Örneğin 17. yüzyılda Felemenkli hekim Jan Baptist van Helmont, açık havada bir kavanoza bırakılan birkaç buğday tanesi ile terli iç çamaşırından yetişkin fare çıkacağını yazdı.

19. yüzyıla kadar kendiliğinden üremeyi savunanlar vardı. Ne var ki, 1859’da Louis Pasteur adlı Fransız bir mikrobiyolog, bunu çürüten zekice bir deney tasarladı. Araştırmalarının seyri içinde, bulaşıcı hastalıklara canlı mikropların neden olduğunu da kanıtladı.

et bakteri e1544107798403

Pasteur’den önce, hastalık ya da bozulma ile organizmalar arasındaki bağdan kuşkulanılmıştı, ama kanıtlanmamıştı. Mikroskoplar aksini kanıtlayana kadar, çıplak gözle görülemeyen küçük canlı kendilikler diye bir şeyin varlığı fikri, hayal ürünü gibi görünüyordu.

1546’da İtalyan hekim Girolamo Fracastoro “bulaşmanın tohumları”nı tarif etti ve işin doğrusuna yaklaştı. Ama canlı, üreyebilir şeyler olduklarını açıkca ifade edemedi ve teorisinin fazla etkisi olmadı. Onun yerine insanlar, çürüyen maddeden gelen zararlı havanın bulaşıcı hastalıklara neden olduğuna inandılar. Mikropların doğasına ilişkin açık bir düşünce olmadan, enfeksiyonun aktarılması ile yaşamın yayılmasının aslında aynı paranın iki tarafı olduğunu kimse bilemezdi.

İlk Bilimsel Gözlemler

17. yüzyılda bilim insanları, üremeyi inceleyerek büyük yaratıkların kökenini bulmaya çalıştı. 1661’de İngiliz hekim William Harvey (kan dolaşımını bulmasıyla ünlüdür) bir ceninin kökenini keşfetme çabasıyla gebe bir geyiği diseke etti ve “omne vivum ex ovo” – her canlı yumurtadan gelir – ilan etti. Söz konusu geyiğin yumurtasını bulamadı; ama en azından olacakları ima etmekteydi.

Kendiliğinden üremenin olanaksızlığının – en azından insan gözünün görebildiği yaratıklar söz konusu olduğu sürece – deneysel kanıtları sunan ilk kişi, İtalyan hekim Francesco Redi’ydi. 1668’de etin kurtlanma sürecini inceledi. Bir parça eti parşömenle kapladı, bir parçayı da açıkta bıraktı. Yalnızca açıktaki et kurtlandı; çünkü oraya sinekler konmuş ve yumurtalarını bırakmıştı.

Francesco Redi

Redi deneyi tülbentle – etin kokusunu emen ve sinekleri çeken – tekrarladı ve tülbentten alınan sinek yumurtalarının, temiz eti kurtçuklarla “tohumlamak” için kullanılabildiğini gösterdi. Redi, kurtçukların kendiliğinden değil, ancak sineklerden doğabileceklerini öne sürdü. Ne var ki, Redi’nin deneyimin önemi anlaşılmadı ve Redi’nin kendisi bile abiyogenezi tam olarak reddetmedi, belli koşullarda gerçekleştiğine inandı.

Mikroskopu ilk yapan ve ayrıntılı bilimsel inceleme için kullananlar arasında Felemenkli bilim insanı Antonie van Leeuwenhoek, bazı canlıların çıplak gözle görülemeyecek kadar küçük olduklarını ve büyük yaratıkların üremesinin, sperm gibi küçük mikroskobik canlılara bağlı olduğunu gösterdi.

Yine de, abiyogenez düşüncesi bilim insanlarının kafasına o kadar derin yerleşmişti ki, birçoğu bu mikroskobik organizmaların üreme organına sahip olamayacak kadar küçük olduklarını ve bu nedenle kendiliğinden doğmaları gerektiğini düşünmeye devam etti.

1745’te İngiliz doğa bilimci John Needham bunu kanıtlamaya koyuldu. Isının mikropları öldürebildiğini biliyordu; bu yüzden bir miktar et suyunu bir deney tüpünde kaynattı -böylece mikroplarını öldürdü- ve ardından soğumaya bıraktı. Et suyunu bir süre gözlemledikten sonra, mikropların geri geldiğini gördü. Mikroptan arındırılmış et suyundan kendiliğinden doğdukları sonucuna vardı. 20 yıl sonra İtalyan fizyolog Lazzaro Spallanzani, Needham’ın deneyini tekrarladı; ama deney tüpünün havası boşaltılırsa, mikropların tekrar büyümediğini gösterdi. Spallanzani et suyunu havanın “tohumladığını” düşündü; ama onu eleştirenler, havanın yeni mikrop kuşağı için “yaşamsal güç” olduğunu öne sürdüler.

Modern biyoloji bağlamında bakıldığında, Needham’ın ve Spallanzani’nin deneylerinin sonuçları kolayca açıklanabilir. Isı pek çok mikrobu gerçekten de öldürmesine rağmen, örneğin bazı bakteriler uykuda, ısıya dirençli sporlara dönüşerek hayatta kalabilir. Pek çok mikrop, pek çok yaşam gibi, besininden enerji almak için havadaki oksijene ihtiyaç duyar. Ne var ki, en önemlisi, bu tür deneyler her zaman bulaşıma açıktı, havada dolaşan mikroplar bir büyüme aracını, kısa bir süre atmosfere maruz kalsa bile kolayca kolonileştirebilir. Bu yüzden, aslında bu deneylerden hiçbiri abiyogenez sorununu şu ya da bu şekilde sonuç alıcı bir biçimde ele almamıştı.

Yüzyıl sonra mikroskoplar ve mikrobiyoloji, sorunu halletmeye yetecek kadar ilerlemişti. Louis Pasteur’ün deneyi havada asılı, maruz kalan her yüzeye bulaşmaya hazır duran mikropların varlığını gösterdi. Önce havayı pamukla filtreledi. Sonra kirlenmiş pamuk filtreleri analiz etti ve filtreye takılan tozları bir mikroskopla inceledi. Yiyeceklerin bozulmasıyla ve çürümesiyle bağlantılı mikroplarla kaynadığını gördü. Adeta mikroplar havadan düşünce hastalığa neden oluyorlardı. Bu, Pasteur’ün bir sonraki adımda başarılı olmak için ihtiyaç duyduğu hassas bilgiydi; o adımda Fransız Bilimler Akademisinin bir meydan okumasını kabullenip, kendiliğinden üreme düşüncesini çürüttü.

Pasteur’ün kuğu boynu deneyi, mikroptan arındırılmış bir et suyunun, havadan tekrar içine düşmeleri önlendiği sürece mikroorganizmasız kalacağını kanıtladı.

Bu deney için Pasteur besin bakımından zengin et suyunu kaynattı – yüzyıl önce Needham ve Spallanzani’nin yaptığı gibi – ama bu kez deney tüpünde önemli bir değişiklik yaptı. Deney tüpünü ısıtıp yumuşattı, sonra aşağı yukarı bükerek bir kuğu boynu şekline soktu. Düzenek soğuyunca, sıcaklık mikropların büyümesine uygun olmasına ve tüp dış havayla bağlantılı olduğu için bol oksijen bulunmasına rağmen, tüpün bir kısmı aşağı doğru kıvrık olduğu için mikroplar et suyunun üzerine düşmüyordu. Mikropların tüpte tekrar büyüyebilmelerinin tek yolu, kendiliğinden üremeydi – ve bu gerçekleşmedi.

Pasteur, mikropların et suyuna havadan bulaştıklarının son bir kanıtı olarak, deneyi tekrarladı; ama bu kez koyun boyunlu tüpü kopardı. Et suyu enfekte oldu: Kendiliğinden üremeyi sonunda çürütmüş ve her canlının canlıdan geldiğini göstermişti. Kirli bir kavanozdan fare çıkmadığı gibi, et suyu dolu bir deney tüpünden de kendiliğinden mikrop çıkmadığı açıktı.

Abiyogenez Geri Dönüyor

1870’te İngiliz biyolog Thomas Henry Huxley, “Biyogenez ve Abiyogenez” başlıklı bir seminerde Pasteur’ün çalışmasını savundu. Bu, kendiliğinden üremenin son savunucularına ezici bir darbe oldu ve hücre teorisi, biyokimya ve genetik disiplinlerine dayanan yeni bir biyolojinin doğumuna işaret etti. 1880’lere gelindiğinde Alman hekim Robert Koch, şarbon hastalığının bulaşıcı bir bakteri tarafından bulaştırıldığını göstermişti.

Yine de, Huxley’in konuşmasından yaklaşık bir yüzyıl sonra yeni bir bilim insanı kuşağı Yeryüzünden ilk yaşamın kökeniyle ilgili sorular sorunca, abiyogenez zihinleri yeniden meşgul etmeye başlayacaktı. 1953’te Amerikalı kimyacılar Stanley Lloyd Miller ve Harold C. Urey, Yeryüzünde yaşamın şafağındaki atmosfer koşullarını canlandırmak için su, amonyak, metan ve hidrojenden oluşan bir karışıma elektrik kıvılcımları gönderdi. Bir haftada aminoasitleri – proteinlerin yapı taşları ve canlı hücrelerin temel kimyasal bileşenleri – yarattılar. Miller ve Urey’in deneyi, cansız maddeden canlı organizma çıkabildiğini göstermeyi amaçlayan çalışmaların patlamasına neden oldu; ama bu kez bilim insanları, biyokimya aletleriyle ve milyarlarca yıl önce gerçekleşen süreçlerin bilgisiyle donanımlıydı.

Louis Pasteur Kimdir?

1822’de yoksul bir Fransız ailede doğan Louis Pasteur o kadar büyük bir şahsiyet oldu ki, ölünce resmi devlet töreniyle gömüldü. Kimya ve tıp eğitimi aldıktan sonra, Strasbourg ve Lille üniversitelerinde akademik görevler üstlendi.

Louis Pasteur

İlk araştırmaları kimyasal kristallerle ilgiliydi; ama mikrobiyoloji alanından daha iyi tanınır. Pasteur mikropların şarabı sirkeye dönüştürdüğünü ve sütü ekşittiğini gösterdi ve mikropları öldüren bir ısıl işlem süreci – pastörizasyon olarak bilinen – geliştirdi.

Mikroplarla ilgili çalışmaları, modern jerm teorisinin gelişmesine yardımcı oldu: Bazı mikropların bulaşıcı hastalıklara neden olduğu düşüncesi. Daha sonra birçok aşı geliştirdi ve mikrobiyoloji araştırmalarına adanmış ve bugüne kadar varlığını sürdüren Pasteur Enstitüsünü kurdu.

Önemli Eserleri:
1866 – Studies on Wine
1868 – Studies on Vinegar
1878 – Microbes: Their Roles in Fermentation, Putrefaction, and Contagion

17. yüzyılda bilim insanları ışığı sonlu ve ölçülebilir bir hızının olup olmadığını araştırmaya başladı. 1690’da Christiaan Huygens ışığı bir boyuna dalga gibi düşündü ve dalganın, camda ya da suda, havada olduğundan daha yavaş yol alacağını öngördü. 1704’te Isaac Newton, bir “tanecik” ya da parçacık akımı olarak ışık teorisini yayınladı. Newton’ın kırılmaya – bir ışık demetinin bir saydam malzemeden diğerine geçerken bükülmesi – ilişkin açıklaması, ışığın havadan suya geçerken daha hızlı yol aldığını varsaydı.

Işığın hızına ilişkin hesaplar, ışığın uzayda ne kadar hızlı yol aldığını gösteren astronomik olgulara dayanmaktaydı. İlk karasal ölçüm 1849’da Fransız fizikçi Hippolyte Fizeau tarafından gerçekleştirildi. Dönen bir dişli çarkın bir diş aralığına bir ışık demeti tutuldu. Sonra bu ışık 8 km uzağa konulan bir aynayla yansıtıldı ve tekrar çarkın bir sonraki diş aralığından geçirildi. Zaman ve mesafeyle birlikte, bunun gerçekleşmesini olanaklı kılan dönüşün kesin hızını da alan Fizeau, ışığın hızını 313.000 km/sn olarak hesapladı.

Hippolyte Fizeau

Newton’la Çelişmek

1850’de Fizeau, fizikçi arkadaşı Leon Foucault ile işbirliği yaptı; Foucault ışık demetini çark dişlisinden geçirmek yerine dönen bir aynadan yansıtarak Fizeau’un aygıtını uyarladı ve daha küçülttü. Dönen aynaya çevrilen ışık, yalnızca döner ayna doğru açıda olduğunda uzak aynaya yansıyacaktı. Sabit aynadan dönen ışık döner ayna tarafından tekrar yansıtılıyordu; ama ışık yol alırken bu ayna hareket ettiği için, tekrar doğrudan kaynağa yansımıyordu.

Foucault’nun deneyinde, bir ışık demeti döner bir aynadan sabit aynaya ve sabit aynadan tekrar döner aynaya yansıtılırken oluşan açı farkından ışığın hızı ölçüldü.

Işığın hızı, ışığın döner aynaya gidişi ile gelişi arasındaki açıdan ve aynanın dönüş hızından yola çıkılarak hesaplanabilirdi.

Foucault Sarkacı

Işığın sudaki hızı, aygıtta döner ayna ile sabit ayna arasına bir su tüpü koyarak ölçülebilirdi. Bu aygıtı kullanan Foucault ışığın suda daha yavaş yol aldığını saptadı. Ona göre, bu haliyle ışık bir parçacık olamazdı ve bu deney, o sırada Newton’ın tanecik teorisinin çürütülmesi olarak görüldü. Foucault aygıtını daha da geliştirdi ve 1862’de ışığın havadaki hızını 298.000 km/sn olarak ölçtü; bugünün 299.792 km/sn’lik değerine çok yakın.

Leon Foucault Kimdir?

Paris’te doğan Leon Foucault, bakteriyolog Alfred François Donne’den ders aldığı tıp okuluna girmeden önce esas olarak evde eğitim gördü. Kan görmeye tahammül edemediği için Foucault çok geçmeden okulu bıraktı, Donne’nin laboratuvar asistanı oldu ve mikroskopla fotoğraf çekmenin bir yolunu buldu. Daha sonra Hippolyte Fizeau ile birlikte çalışıp, Güneş’in ilk fotoğrafını çekti.

Leon Foucault

Foucault ışığın hızını ölçmenin yanı sıra, 1851’de bir sarkaç ve daha sonra bir jiroskop kullanarak Yer’in dönüşünün deneysel kanıtlarını göstermeklede ünlüdür. Resmi bilim eğitimi almamış olmasına rağmen, Paris’te İmparatorluk Gözlemevi’nde Foucault’a bir kürsü ayrıldı. Birçok bilim derneğine de üye oldu ve Eyfel Kulesi’nde adı yazılı 72 Fransız bilim insanından biridir.

Önemli Eserleri:

1851 – Demonstration of Physical Movement of Rotation of the Earth by Means of the Pendulum
1853 – On the Relative Velocities of the Light in Air and in Water

Işığın Hızı Hakkında Tarihsel Gelişmeler

1676 – Ole Rømer, Jüpiter’in uydusu Io’nun tutulmalarını kullanarak ışık hızının ilk başarılı ölçümünü yapar.

1690 – Christiaan Huygens, ışığın bir tip dalga olduğunu öne süren Treatise on Light’ı yayınlar.

1704 – Isaac Newton’ın Opticks’i ışığın bir “tanecikler” akımı olduğunu öne sürer.

1864 – James Clerk Maxwell, elektromanyetik dalgalann hızı ışığın hızına o kadar yakındır ki, ışık bir elektromanyetik dalga biçimi olması gerektiğini anlar.

1879-83 – Almanya doğumlu ABD’li fizikçi Albert Abraham Michelson, Foucault’nun yöntemini geliştirir ve bugünün değerine çok yakın bir ışık hızı elde eder.

Havanın açık, güneşli olduğu günlerde gökyüzü masmavi görünür. Böyle günlerde Güneş batarken gökyüzü bize olağanüstü bir görünüm sunar ve kırmızı, turuncu renklere bürünür. Peki tüm bunlar nasıl olur? Haydi bu sorunun yanıtını bir deney yaparak bulalım.

Gerekli Malzemeler

 

Bir bardak su
Yarım çay bardağı süt
Damlalık
Beyaz ışık veren bir el fener

Deneyimize Başlıyoruz!

1. Deneyi karanlık bir odada yapın.

2. Bir bardak suya bir iki damla süt damlatın.

3. El fenerini yakıp tepeden bardağa tutun. Bardağın içindeki karışımın hangi renk olduğuna dikkat edin.

Gökyüzü Neden Mavi Deneyi

4. Suya 10 damla daha süt damlatın. Feneri bu kez yandan tutun. Siz de bardağın arkasına geçin ve karışımın içinden fenere bakın. Ne renk görüyorsunuz?

Gökyüzü Deneyi

Gökyüzü dediğimiz, gezegenimizi saran hava kütlesinden başka bir şey değildir. Bu hava kütlesi “atmosfer” olarak adlandırılır. Atmosfer azot, oksijen gibi gazların yanı sıra su buharı ve toz parçacıkları içerir. İşte bu gaz molekülleri ve toz parçacıklarına güneş ışınları çarpınca olan olur!

Mavi ışınlar, gaz moleküllerine ve toz parçacıklarına çarpınca her yöne saçılır. Böylece tüm gökyüzünü mavi görürüz.

Güneş ışınları beyaz görünse de aslında kırmızı, turuncu, sarı, yeşil ve mavi ışınların karışımından oluşur. Üstelik bu ışınlar gaz molekülleri ve toz parçacıklarına çarpınca saçılır; ancak her biri farklı biçimde! Mavi ışınlar diğerlerinden daha çok saçılır. Çünkü gaz molekülleri ve toz parçacıkları, mavi ışınları saçacak büyüklüktedir. Böylece gökyüzü mavi renk görünür. Deneyimizde bardağın içindeki su gökyüzünü, fener ışığı güneş ışınlarını, süt de atmosferde bulunan gaz moleküllerini ve toz parçacıklarını simgeler. Bardağa biraz daha süt ekleyince işler değişir. Bardaktan geçen ışık kırmızı, turuncu renklerde görünür. Çünkü Güneş batarken ufka yaklaşır. Bu da güneş ışınlarının atmosferin yere yakın daha tozlu bölümünden geçmesi anlamına gelir. Bu durumda kırmızı ışınlar daha çok saçılır ve gökyüzü kırmızı, turuncu, pembe renklerde görünür.

Alessandro Volta’nın pili buluşundan esinlenen kimyacılar kuşağının öncü ışığı İsveçli Jöns Jakob Berzelius bir dizi deney yapıp, elektriğin kimyasallar üzerindeki etkisine baktı. 1819’da yayımlanan, Elekrokimyasal İkicilik (Düalizm) denilen ve bileşiklerin karşıt elektrik yüklü elementlerin bir araya gelmesiyle yaratıldığını öne süren bir teori geliştirdi. 1803’te Berzelius bir maden sahibiyle birlikte çalışıp, bir volta pili yapmış ve elektriğin tuzları nasıl ayırdığını görmüştü. Alkali metaller ile alkalin topraklar pilin negatif kutbuna; oksijen, asitler ve oksitlenmiş maddeler pozitif kutbuna göç etti. Tuzlu bileşiklerin pozitif yüklü bazik bir oksit ile negatif yüklü asidik bir oksiti birleştirdiği sonucuna vardı.

Berzelius düalist teorisini geliştirip, bileşiklerin, bileşen parçalar arasında karşıt elektrik yükünün çekimiyle birbirine bağlandığını öne sürdü. Bu teori, daha sonra yanlış olduğu gösterilmesine rağmen, kimyasal bağlara ilişkin araştırmaları tetikledi. 1916’da elektriksel bağlanmanın “iyonik” bağlanma olarak gerçekleştiği; yani atomların elektron kazanarak ya da kaybederek birbirini karşılıklı olarak çeken yüklü atomlar ya da iyonlar haline geldikleri anlaşıldı. Aslında bu, bir bileşikte atomların bağlanma yollarından yalnızca biriydi – biri de, elektronların atomlar arasında paylaşıldığı kovalent bağdır.

Kimyasal Bileşikler Hakkında Tarihsel Gelişmeler

1704 – Isaac Newton atomların bir kuvvet tarafından birbirine bağlandığını öne sürer.

1800 – Alessandro Volta iki farkı metali yan yana koymanın elektrik üretebildiğini gösterir ve böylece ilk pili yaratır.

1807 – Humphry Davy tuzları elektrolizle ayırarak sodyumu ve diğer metal elementleri keşfeder.

1857-58 – August Kekule ve diğerleri valans – bir atomun oluşturabildiği bağ sayısı – düşüncesini geliştirir.

1916 – ABD’li kimyacı Gilbert Newton Lewis elektronların paylaşıldığı kovalent bağ düşüncesinin öne sürerken, Alman fizikçi Walther Kossel iyonik bağlar düşüncesini önerir.

18. yüzyılın sonuna doğru bilim insanları dünyanın bir dizi temel maddeden ya da kimyasal elementten oluştuğunu anlamaya başlamıştı. Ama hiç kimse bir elementin ne olduğundan emin değildi. İngiliz meteorolog John Dalton hava durumuna ilişkin incelemelerinde, her elementin kendine özgü benzersiz, özdeş atomlardan oluştuğunu ve bir elementi ayırt eden ve tanımlayan şeyin bu özel atom olduğunu gördü. Dalton kimyanın temelini attı. Atom düşüncesinin tarihi eski Yunanistan’a kadar geri gider; ama hep bütün atomların özdeş oldukları varsayılmıştı. Dalton’ın farkı, her elementin farklı atomlardan oluştuğunu anlamış olmasıydı. O zaman bilinen elementleri – hidrojen, oksijen ve nitrojen dahil – oluşturan atomları “katı, tek parça halinde, sert, içine girilmez, hareketli parçacıklar” olarak tarif etti.

Dalton Atom Modeli 2

Elementler birbirleriyle birleşip sabit oranlı bileşikler oluşturur.
– Bu sabit oranlar her bir elementin atomlarının göreli ağırlığına bağlı olmalıdır.
– Bu nedenle bir elementin atom ağırlığı, bir bileşiğe giren her elementin ağırlığından hesaplanabilir.
Elementler tablosu nihai parçacıkların ağırlığını temel alır.

Dalton’ın düşünceleri, havanın su emme miktarını hava basıncının nasıl belirlediğini araştırırken ortaya çıktı. Havanın farklı gazların bir karışımı olduğuna inanmaya başladı. Deney yaparken, verili miktarda saf oksijenin aynı miktarda saf nitrojenden daha az su buharı tuttuğunu gözlemledi ve bundan, oksijen atomlarının nitrojen atomlarından daha büyük ve daha ağır olduğu sonucunu çıkardı.

Dalton Atom Modeli

Ağırlık Önemlidir

Dalton farklı elementlerin atomlarının ağırlıklarına göre ayırt edilebileceğini anladı. İki ya da daha fazla elementin atomlarının ya da “nihai parçacıklarının” birleşip çok basit oranlı bileşikler oluşturduklarını gördü ve bu şekilde, bir bileşiğe giren her elementin ağırlığıyla her atomun ağırlığını çıkarabilirdi. Çok hızlı bir biçimde o zaman bilinen her elementin atom ağırlığını ortaya çıkardı.

Atom Modelleri Nedir Özellikleri Nelerdir.

Dalton’a göre hidrojen en hafif gazdı, bu nedenle onun atom ağırlığını 1 olarak belirledi. Suda hidrojenle birleşen oksijenin ağırlığından ötürü, oksijenin atom ağırlığını 7 olarak belirledi. Ne var ki, Dalton’un yönteminde bir kusur vardı; çünkü aynı elementin atomlarının birleşebileceğini fark etmedi. Bir atom bileşiğinde – bir molekülde – her elementten yalnızca bir atom olduğunu varsaydı. Ama Dalton’un çalışması bilim insanlarını doğru yola sokmuştu ve on yıl içinde İtalyan fizikçi Amedeo Avogadro bir moleküler oran sistemi geliştirip, atom ağırlıklarını doğru bir biçimde hesapladı. Yine de Dalton’un teorisinin temel düşüncesinin – her elementin kendine özgür benzersiz büyüklükte atomları olduğu düşüncesi – doğru olduğu anlaşıldı.

Dalton’nun tablosu farklı elementlerin simgelerini ve atom ağırlıklarını gösterir. Dalton, meteoroloji üzerinden, hava ve su parçacıklarının neden birbirine karışabildiğini kendine sorarak atom teorisine ulaştı.

John Dalton Kimdir?

İngiltere’de Lake District’te 1766’da Quaker bir ailede doğan John Dalton, 15 yaşından itibaren düzenli hava durumu gözlemleri yaptı. Bunlar birçok önemli içgörü edinmesini sağladı (atmosfer neminin hava soğuyunca yağmura dönüştüğünü görmesi gibi). Dalton meteorolojik araştırmaları dışında, kardeşiyle paylaştıkları bir durumdan da büyülendi: renk körlüğü. Bu konuyla ilgili bilimsel tebliği, 1817’de başkanlığına seçildiği Manchester Edebiyat ve Felsefe Derneğine kabul edilmesini sağladı. Bu dernek için, atom teorisiyle ilgili olanlar da dahil yüzlerce bilimsel yazı yazdı. Atom teorisi hızla kabul gördü ve Dalton sağlığında bir şöhret oldu. 1844’te Manchester’da cenaze törenine 40.000’den fazla kişi katıldı.

John Dalton

Önemli Eserleri:
1805 – Experimental Enquiry into the Proportion of the Several Gases or Elastic Fluids, Constituting the Atmosphere (Atmosferi Oluşturan Çeşitli Gazların ya da Elastik Sıvıların Oranları Üzerine Deneysel İnceleme)
1808 – 1827 – New System of Chemical Philosophy (Yeni Kimya Felsefesi Sistemi)

Atom Modelleri

Elementler Hakkında Tarihsel Gelişmeler

MS yaklaşık 400 – Demokritos, dünyanın bölünmez parçacıklardan oluştuğunu öne sürer.

MS 8. yüzyıl – İranlı bilgin Cabir bin Hayyan elementleri metal olanlar ve olmayanlar şeklinde sınıflandırır.

1794 – Joseph Proust; bileşiklerin, her zaman aynı oranda birleşen elementlerden oluştuğunu gösterir.

1811 – Amedeo Avogadro, eşit miktarda farklı gazın eşit sayıda molekül içerdiğini gösterir.

1869 – Dimitri Mendeleyev, elementleri atom ağırlıklarına göre sergileyen bir periyodik tablo çizer.

1897 – Joseph John Thomson elektronu keşfederek, olası en küçük parçacığın atom olmadığını gösterir.

19. yüzyılın dönümünde ışığın doğası sorunuyla ilgili bilimsel görüş bölünmüştü. Isaac Newton bir ışık demetinin sayısız, minik, hızlı hareket eden “taneciklerden” (parçacık) oluştuğunu savunmuştu. Işık mermiye benzer bu taneciklerden oluşursa, diyordu, ışığın düz çizgiler halinde yol almasının ve gölge yapmasının nedenini açıklar. Ama Newton’ın tanecikleri ışığın neden kırıldığını (cama girince büküldüğünü) ya da gökkuşağının renklerine bölündüğünü – yine kırılmanın bir sonucu – açıklamıyordu. Christiaan Huygens ışığın taneciklerden değil dalgalardan oluştuğunu savunmuştu. Işık dalga olarak yol alırsa, diyordu Huygens, bu olayları açıklamak kolay olur. Ama Newton o kadar heybetliydi ki, pek çok bilim insanı parçacık teorisine arka çıktı. Sonra 1801’de İngiliz hekim ve fizikçi Thomas Young’ın aklına, sorunu şöyle ya da böyle halledeceğine inandığı basit ama yaratıcı bir deney tasarlamak geldi. Bu düşünce, Young berrak bir su damlacığından geçen mum ışığının yarattığı ışık örüntülerine bakarken başladı. Örüntü parlak bir merkezin etrafında renkli halkaları gösteriyordu ve Young, halkalara etkileşen ışık dalgalarının neden olup olmadığını merak etti.

Aydinlik

– Eğer ışık düz çizgi halinde yol alan parçacıklardan oluşuyorsa, basit bir deneyle kanıtlanabilir.
– Bir ışığı iki bitişik yarıktan bir perdeye yansıtın. Perdede iki ışık havuzu görülmelidir.
– Ama onun yerine, tıpkı su dalgaları iki yarıktan akınca olduğu gibi, ışığın ve karanlığın karışan örüntülerini yaratır.
Işık dalga olarak yol almalı.

çift Yarık Deneyi

Çift Yarık Deneyi

Young bir oyun kağıdında iki yarık açtı ve üzerlerine bir ışık demeti çevirdi. Işık, yarıkların arkasına yerleştirilen kağıt perdede, Young’ı dalga olduklarına inandıran bir örüntü yarattı. Newton’ın dediği gibi ışık parçacık akışları olsaydı, her yarığın tam ötesinde bir ışık şeridi olmalıydı. Ama Young, hatları belirsiz bir barkod gibi, almaşık parlak ve koyu bantlar gördü. Işık dalgalarının yarıkların ötesine yayılınca etkileşim içine girdiklerini öne sürdü. İki dalga aynı zamanda yukarı (tepe) ya da aşağı (çukur) dalgalansa, iki kat büyük bir dalga meydana getirirler (yapıcı girişim) – parlak bantlar yaratarak. Bir dalga yukarı doğru dalgalanırken diğeri aşağı doğru dalgalanırsa, birbirlerini silerler (yıkıcı girişim) – koyu bantlar yaratarak. Young ışığın farklı renklerinin farklı girişim örüntüleri yarattığını da gösterdi. Bu, ışığın renginin dalga boyuna bağlı olduğunu kanıtladı.

Young’ın çift yarık deneyi, ışığın bir parçacık değil, bir dalga olduğuna bilim insanların bir yüzyıl boyunca inandırdı. Sonra 1905’te Albert Einstein, ışığın sanki bir parçacık akışıymış gibi de hareket ettiğini gösterdi – bir parçacık ve bir dalga gibi davranabilir. Young’ın deneyi o kadar basitti ki, 1961’de Alman fizikçi Claus Jönsson atomaltı parçacık elektronlarının benzer girişim ürettiğini, dolayısıyla onların da dalga olması gerektiğini göstermek için bu deneyi kullandı.

Thomas Young Kimdir?

İngiltere’de Somerset’te Quaker ebeveynlerin büyüttüğü 10 çocuğun en büyüğü olan Thomas Young’ın parlak zekası onu bir çocuk dahi yaptı ve “Genç Fenomen” lakabı takıldı. 13 yaşında beş dilden metinleri okuyabiliyordu. Yetişkin olarak Mısır hiyegroliflerinin ilk modern çevirisini yaptı.

Thomas Young

İskoçya’da tıp eğitim aldıktan sonra 1799’da Londra’da hekimliğe başladı; ama boş zamanlarında, bir müzikal akord teorisinden dilbilime kadar her konuda araştırma yapan gerçek bir bilgindi. Ama en çok ışık üzerine çalışmalarıyla ünlüdür. Işık girişimi ilkesini kanıtlamanın yanı sıra, renkli görmeye ilişkin ilk modern bilimsel teoriyi geliştirdi ve gördüğümüz renklerin, üç temel rengin – mavi, kırmızı ve yeşil – değişik oranları olduğunu savundu.

Önemli Eserleri:

1804 – Experiments and Calculations Relative to Physical Optics
1807 – Course of Lectures on Natural Philosophy and the Mechanical Arts (Doğa Felsefesi ve Mekanik Sanatlar Üzerine Dersler)

Işık Hakkında Tarihsel Görüşler

1678 – Christiaan Huygens, ışığın dalga olarak yol aldığını ilk kez önerir. Treatise on Light’ı 1690’da yayımlar.

1704 – Opticks kitabında Isaac Newton, ışığın parçacık ya da “tanecik” akışlarından oluştuğunu öne sürer.

1905 – Albert Einstein ışığın hem dalga hem daha sonra foton denilen parçacık olarak düşünülmesi gerektiğini savunur.

1916 – ABD’li fizikçi Robert Andrews Millikan, Einstein’ın haklı olduğunu deneyle kanıtlar.

1961 – Claus Jönsson, Young’ın çift yarık deneyini elektronlarla tekrarlar ve ışık gibi elektronların da hem dalga hem parçacık gibi davranabildiklerini gösterir.

17. yüzyılda Isaac Newton “Yer’i tartma”nın – ya da Yer’in yoğunluğunu hesaplamanın – yöntemlerini önermişti. Bu yöntemlerden biri, bir dağın kütleçekimin onu düşeyden ne kadar uzağa çektiğini bulmak için bir çekül ipinin dağın her tarafındaki açısını ölçmeyi gerektiriyordu. Bu sapma, çekül doğrusu astronomik yöntemler kullanılarak hesaplanan bir düşeyle karşılaştırılarak hesaplanabilirdi. Dağın yoğunluğu ve hacmi belirlenebilse, o zaman buna bağlı olarak Yer’in yoğunluğu da belirlenebilirdi. Ne var ki, Newton’ın kendisi de, sapmanın o günün aletleriyle ölçülemeyecek kadar küçük olacağını düşündüğü için, bu düşünceye aldırış etmedi.

Chimborazo Dağı

1738’de Fransız astronom Pierre Bouguer, deneyi Ekvador’da Chimborazo’nun yamaçlarında yapmaya çalıştı. Ne var ki, hava durumu ve yükseklik sorunlara neden oldu ve Bouguer ölçümlerinin doğru olmadığını düşündü. 1772’de Nevil Maskelyne, Londra Royal Society’ye deneyin Britanya’da yapılabileceğini önerdi. Society kabul etti ve bir yerölçümcüyü uygun bir dağ seçmeye gönderdi. Maskelyne İskoçya’da Schiehallion’u seçti ve dağın her iki tarafından neredeyse dört ay gözlem yaparak geçirdi.

Schiehallion Dağı
Schiehallion, şekli simetrik ve yalıtık olduğu (bu nedenle diğer dağların kütleçekiminden daha az etkilendiği) için bu deney yeri olarak seçildi.

Kayaçların Yoğunluğu

Çekülün yıldızlara göre yönelimi, yükseklik farkından ötürü, herhangi bir kütleçekim etkisi olmasa bile, iki istasyonda farklı olmalıydı. Ne var ki, bu hesaba katıldığında bile, hala 11,6 saniyelik bir yay farkı (0,003 derecenin biraz üstünde) vardı. Maskelyne dağın şeklinin bir etüdünü ve kayaçlarının yoğunluk ölçümünü kullanıp, Schiehallion’un kütlesini çıkardı. Bütün Yer’in Schiehallion’la aynı yoğunlukta olduğunu varsayıyordu; ama çekül sapması, beklediğinin yarısından az bir ölçülen değer gösterdi. Maskelyne yoğunluk varsayımının doğru olmadığını anladı. Yer’in yoğunluğu, olasılıkla metalik bir çekirdeğe sahip olduğu için, yüzey yoğunluğundan fazlaydı. Fiilen gözlemlenen açı kullanılıp, Yer’in genel yoğunluğunun Schiehallion kayaçlarının yaklaşık iki katı olduğu çıkarıldı.

Bu sonuç, İngiliz astronom Edmond Halley’in savunduğu ve Yer’in içinin boş olduğunu söyleyen teoriyi çürüttü. Yer’in hacminden ve ortalama yoğunluğundan kütlesini çıkarmaya da olanak verdi. Maskelyne’in Yer’in genel yoğunluğu için bulduğu değer 4500 kg/m3’tü. Bugün kabul edilen değer 5,515 kg/m3’le karşılaştırıldığında, Yer’in yoğunluğunu yüzde 20’den az bir hatayla hesaplamış ve süreç içinde Newton’ın kütleçekim yasasını kanıtlamıştı.

Nevil Maskelyne Kimdir?

1732’de Londra’da doğan Nevil Maskelyne okulda astronomiye merak saldı. Cambridge Üniversitesinden mezun olup rahip olarak atandıktan sonra, 1758’de Kraliyet Derneği üyesi oldu ve 1765’ten ölünceye kadar Kraliyet Astronomu oldu.

Nevil Maskelyne

1761’de Kraliyet Derneği, Maskelyne’ı Atlantik adası St. Helena’ya Venüs geçişini gözlemlemeye gönderdi. Gezegen Güneş eğrisinden geçerken alınan ölçümler, astronomların Yer ile Güneş arasındaki mesafeyi hesaplamalarına olanak verdi. Denizdeyken boylam ölçme sorununu – o zamanın önemli bir sorunu – çözmeye de çok zaman harcadı. Yöntemi, ay ile verili bir yıldız arasındaki mesafeyi dikkatli bir biçimde ölçmeyi ve yayımlanmış cetvellere başvurmayı kapsamaktaydı.

Önemli Eserleri:

1764 – Astronomical Observations Made at the Island of St. Helena
1775 – An Account of Observations Made on the Mountain Schiehallion for Finding its Attraction

Yer’in Yoğunluğu Hakkında Tarihsel Gelişmeler

1687 – Isaac Newton; Yer’in yoğunluğu ölçmek için deneyler önerdiği Principia’yı yayımlar.

1692 – Yer’in manyetik alanını açıklamaya çalışan Edmond Halley, gezegenin eşmerkezli üç boş küreden oluştuğunu öne sürer.

1738 – Pierre Bouguer, Ekvador’da bir volkan olan Chimborazo’da Newton’ın deneyini yapmaya kalkışır ve başarılı olmaz.

1798 – Henry Cavendish Yer’in yoğunluğunu hesaplamak için farklı bir yöntem kullanır ve 5448 kg/m3 olduğunu bulur.

1854 – George Biddell Airy, bir madende sarkaç kullanarak Yer’in yoğunluğunu ortaya çıkarır.

Filozoflar yüzyıllarca şimşeğin korkunç gücüne ve kehribar gibi katıların ipek kumaşa sürtülünce çıkan kıvılcımlara hayret etmişti. Kehribarın Yunanca karşılığı “elektron”du ve kıvılcımlanma olgusunun, statik elektrik olduğu anlaşıldı.

1754’te bir deneyde Benjamin Franklin bir gök gürültüsünün içine bir uçurtma uçurdu ve bu iki olgunun yakından ilişkili olduğunu gösterdi. Uçurtmanın ipine bağlı pirinç bir anahtardan kıvılcımlar çıktığını görünce, bulutların elektriklendiğini ve şimşeğin de bir elektrik biçimi olduğunu kanıtladı.

Benjamin Franklin uçurtma deneyi

Franklin’in çalışması, Joseph Priestley’in 1767’de The History and Present State of Electricity (Elektriğin Tarihi ve Bugünkü Durumu)‘i yayımlamasına esin kaynağı oldu. Ama 1780’de bir kurbağanın bacağının seğirmesini fark edince elektriği anlamaya doğru ilk önemli adımları atan kişi, Bologna Üniversitesinde anatomi hocası olan Luigi Galvani’ydi.

Galvani, hayvanların “hayvansal elektrik”le hareket ettiklerini söyleyen bir teoriyi araştırıyordu ve her neyse onun kanıtını bulmak için kurbağaları parçalayıp inceliyordu. Yakında statik elektrik üreten bir makine olduğunda, masada yatan kurbağa bacağının, kurbağa öleli çok olmasına rağmen, aniden seğirdiğini fark etti. Bir kurbağa bacağı, demir bir çite değen pirinç bir çengele asılınca da aynı şey oldu. Galvani; bu kanıtın, elektriğin bizzat kurbağadan geldiğine ilişkin inancını desteklediğine inandı.

Luigi Galvani

Luigi Galvani, burada ünlü kurbağa bacağı deneyini gerçekleştirirken gösteriliyor. Hayvanların, “hayvansal elektrik” dediği elektriksel bir kuvvet tarafından hareket ettirildiklerine inanıyordu.

Volta’nın Atılımı

Galvani’nin genç meslektaşı, doğa felsefesi profesörü Alessandro Volta, Galvani’nin gözlemlerine merak saldı ve başlangıçta onun teorisine inandı. Volta’nın elektrik deneyleri konusunda dikkate değer bir geçmişi vardı. 1775’te, bir deney anında elektrik kaynağı sunan bir aygıt, “elektrofor”u (modern eşdeğeri kondansatördür) icat etmişti. Aygıt, statik elektrik yükü kazandırmak için kedi kürküne sürtülen bir reçine diskten oluşuyordu. Her seferinde reçinenin üzerine metal bir disk yerleştirilir, böylece elektrik yükü aktarılıp metal disk elektriklenirdi.

Volta, Galvani’nin hayvansal elektriğinin “kanıtlanmış hakikatler arasında” olduğunu ifade etti. Ama çok geçmeden kuşkulanmaya başladı. Kancada kurbağa bacağının seğirmesine neden olan elektriğin iki farklı metalin (pirinç ile demir) birbirine değmesinden kaynaklandığı sonucuna vardı. Düşüncelerini 1792’de ve 1793’te yayımladı ve olguyu araştırmaya koyuldu.

Volta, tek bağlantılı iki farklı metalin, dilinde tuhaf bir duyum hissetmesine yetecek kadar olmasına rağmen, fazla elektrik üretmediğini gördü. Sonra tuzlu suyla birbirine bağlanan bir dizi oluşturarak etkiyi arttırma düşüncesi aklına geldi. Küçük bir bakır disk aldı, onun üzerine çinko bir disk yerleştirdi, onun üzerine tuzlu suya batırılmış bir parça karton koydu, sonra tekrar bakır disk, çinko disk, tuzlu sulu karton koydu ve sonunda bir sütun ya da baca oluşana kadar böyle devam etti. Başka bir deyişle bir pil ya da “batarya” yarattı. Tuzlu sulu kartonun amacı, metallerin birbirine değmesine izin vermeden elektrik taşımaktı.

Sonuç heyecan vericiydi. Volta’nın kaba pili yalnızca birkaç volt (ismini ondan alan elektrik birimi) elektrik üretmiş olabilir; ama iki ucu bir parça telle birleştirilince küçük bir kıvılcım çıkarmaya ve ufak bir elektrik çarpması yaşatmaya yeterliydi.

ilk pil

Volta keşfini 1799’da yaptı ve haber hızla yayıldı. Sonucu 1801’de Napolyon Bonapart’a gösterdi; ama daha önemlisi, vardığı sonuçları, Britanya’da Kraliyet Derneğinin başkanı Sir Joseph Banks’a uzun bir mektupla bildirmişti. Mektup, “Farklı türden iletken maddelerin salt temasıyla tahrik edilen elektrik üzerine” başlıklıydı ve Volta kendi aygıtını tarif eder: “Sonra, metalik parçalardan birini, örneğin gümüş bir parçayı bir masanın ya da herhangi bir tezgahın üzerine yatay olarak yerleştiriyorum ve birincisinin üzerine çinko parçayı uyduruyorum; ikincisinin üzerine de ıslatılmış disklerden birini koyuyorum; sonra bir gümüş plaka ve hemen onun üzerine bir çinko daha… böyle devam edip… devrilmeyecek kadar yüksek bir sütun oluşturuyorum.”

Alessandro Volta Napoleon

Bir elektrik zili ya da voltajı saptayan bir yarı iletken olmadığı için, Volta dedektör olarak kendi vücudunu kullandı ve elektrik çarpmasına aldırmamış göründü: “Yirmi çift parçadan (daha fazla değil) oluşan bir sütundan bütün parmağı epeyce acıtan şoklar alıyorum.” Sonra bir çizgi ya da daire şeklinde dizilmiş, tuzlu su içeren bir dizi kupadan ya da kadehten oluşan daha ayrıntılı bir aygıtı tarif eder. Her bir çift, her kupadaki sıvıya daldırılan bir parça metalle birbirine bağlanır. Bu metalin bir ucu gümüş, diğer ucu çinkodur ve bu metaller. bir kupadaki sıvıya yalnızca gümüş ve bir sonrakine yalnızca çinko batırılmak koşuluyla, herhangi bir metalin teliyle birbirine bağlanabilir ya da lehimlenebilir. Bunun daha hantal olmasına rağmen, bazı bakımlardan katı pilden daha kullanışlı olduğunu açıklar.

Alessandro Volta pil

Volta, zincirin bir ucundaki kaseye elini sokup, diğer uca bağlı bir teli alnına, göz kapağına ya da burnun ucuna değdirince hissedilen tatsız duyumları ayrıntısıyla tarif eder: “Birkaç saniye bir şey hissetmem; ama sonra, telin ucuna değen kısımda başka bir duyum başlar; bu, temas noktasıyla sınırlı, keskin bir acıdır (şoksuz), bir titremedir, yalnızca devam etmekle kalmaz, o derece artar ki, kısa sürede dayanılmaz hale gelir ve devre kesilinceye kadar durmaz.”

Mektubunun Banks’a ulaşmış olması, Napolyon Savaşları devam ettiği için çok şaşırtıcıdır; ama Banks haberi ilgili herkese hemen yaydı. Birkaç hafta geçmeden Britanya’nın her tarafında insanlar elektrik bataryaları yapıyor ve elektrik akımının özelliklerini araştırıyordu. 1800’den önce bilim insanları, zor ve memnuniyet verici olmayan statik elektrikle çalışmak zorunda kalmışlardı. Volta’nın buluşu, bir dizi maddenin – sıvılar, katılar, gazlar – yüklü bir elektrik akımına nasıl tepki vereceğini anlamalarına olanak verdi.

Volta’nın buluşuyla ilgi çalışanlar arasında, William Nicholson, Anthony Carlisle ve William Cruickshank vardı; bunlar Mayıs 1800’de “otuz altı yarım kron ve buna denk çinko ve kartondan” oluşan kendi pillerini yaptılar ve akımı platin tellerden suyla dolu bir tüpe geçirdiler. Ortaya çıkan gaz kabarcıkları, iki parça hidrojen ve bir parça oksijen olarak saptandı. Henry Cavendish suyun formülünün H2O olduğunu göstermişti; ama su ilk kez elementlerine ayrıldı.

Volta’nın pili, işitme cihazlarından kamyonlara ve uçaklara kadar her şeyde kullanılan bütün modern pillerin atasıydı. Gündelik aygıtlarımızın birçoğu pil olmadan çalışmaz.

volta deneyleri

Metalleri Yeniden Sınıflandırmak

Volta’nın pili elektrik akımını incelemeyi başlatmanın ve böylece yalnızca fiziğin yeni bir dalını yaratmakla kalmayıp, modern teknolojinin gelişimini de hızla ilerletmenin yanı sıra, metallerin tamamen yeni bir kimyasal sınıflandırmasına da yol açtı; çünkü pilinde çeşitli metal çiftlerini kullanmış, bazılarının diğerlerinden daha iyi iş gördüğünü bulmuştu. Gümüş ile çinko ve bakır ile kalay kusursuz bir bileşim oluşturuyordu, ama gümüşle gümüşü ya da kalayla kalayı denediğinde, elektrik elde edemiyordu; metaller farklı olmalıydı. Metallerin, her biri bir alttakiyle temas edince pozitif olacak şekilde dizi halinde düzenlenebileceğini gösterdi. Bu elektrokimyasal dizi, o zamandan beri kimyacılar için paha biçilmez olmuştur.

Kim Haklıydı?

Volta’nın sırf Galvani’nin hipotezinden kuşku duyduğu için farklı metallerin dokunuşunu araştırmaya başlaması, bu öykünün ironik bir yanıdır. Ama Galvani tamamen haksız değildi sinirlerimiz vücuda elektriksel sinyaller gönderek çalışır; Volta’nın teorisi de tamamen doğru değildi. Elektriğin iki farklı metalin yalnızca birbirine değmesinden kaynaklandığına inandı; oysa daha sora Humphry Davy, hiçbir şeyin yoktan var olmadığını gösterdi. Elektrik üretilirken, başka bir şey tüketilmelidir. Davy bir kimyasal tepkime gerçekleştiğini öne sürdü ve bu, onun elektrikle ilgili başka önemli keşifler yapmasına yol açtı.

Alessandro Volta Kimdir?

Kuzey İtalya’da, Como’da 1745’te doğan Alessandro Giuseppe Antonio Anastasio Volta, aristokrat ve dindar bir ailede büyüdü; rahip olması bekleniyordu. Ama o statik elektrikle ilgilendi ve 1775’te “elektrofor” dediği gelişmiş bir elektrik üretme aygıtı yaptı. 1776’da Maggiore Gölü’nde atmosferdeki metanı keşfetti ve kapalı cam bir kabın içinde bir elektrik kıvılcımıyla tutuşturma yöntemiyle metanın yanmasını araştırdı.

volta metan deneyi

1779’da Volta, Pavia Üniversitesinde fizik profesörü olarak atandı ve bu görevini 40 yıl sürdürdü. Ömrünün sonuna doğru uzaktan kumandalı tabancaya öncülük etti; bununla bir elektrik akımı Como’dan Milano’ya 50 km yol alarak bir tabancayı ateşliyordu. Bu, iletişim için elektriği kullanan telgrafın habercisiydi. Elektrik gerilimi birimi volt, adını ondan alır.

Alessandro Volta batarya

Elektrik Hakkında Tarihsel Gelişmeler

1754 – Benjamin Franklin, ünlü uçurtma deneyiyle şimşeğin doğal bir elektrik olduğunu kanıtlar.

1767 – Joseph Priestley statik elektrikle ilgili kapsamlı bir anlatım yayımlar.

1780 – Luigi Galvani kurbağa bacaklarıyla “hayvansal elektrik” deneyleri yapar.

1800 – İngiliz kimyacılar William Nicholson ve Anthony Carlisle, bir volta pili kullanıp, suyu iki elementine, oksijen ve hidrojene ayırır.

1807 – Humphry Davy elektrik kullanarak potasyum ve sodyum elementlerini yalıtır.

1820 – Hans Christian Orsted, manyetizma ile elektrik arasındaki bağı ortaya çıkarır.

Yanar Hava

Oksijenin Keşfi

Elektrikle Üretilen Kimyasal Etkiler

Elektrik Etkisi İletken Telle Sınırlı Değildir

Efendim, Gün Gelir Bunu Vergilendirirsiniz

17. yüzyılın sonunda Isaac Newton hareket ve kütleçekim yasalarını saptayarak, bilimi her zamankinden daha kesin ve matematiksel hale getirdi. Çeşitli alanlarda bilim insanları Evren’i yöneten temel ilkeleri tanımladı ve bilimsel araştırmanın çeşitli kolları giderek daha fazla uzmanlaştı.

Universum small

Akışkan Dinamiği

1720’lerde İngiliz din adamı Stephen Hales bitkilerle bir dizi deney yaparak kök basıncını – bitkilerin sapı bu sayede yükselir – keşfetti ve laboratuvarda gaz toplama aygıtını, pnömatik hazneyi icat etti; bu aygıtın daha sonra havanın bileşenlerini saptamada yararlı olduğu anlaşıldı. İsviçreli matematikçi bir ailenin en parlak üyesi olan Daniel Bernoulli, Bernoulli denklemini formüle – bir akışkan hareket edince basıncı düşer – etti. Bu, kan basıncını ölçmesini olanaklı kıldı. Bu, aynı zamanda uçakların uçmasına olanak veren ilkedir de.

0 15db78 2a6ec649 XL

Daha sonra gizil ısı teorisini formüle edecek olan İskoç kimyacı Joseph Black 1754’te, kalsiyum karbonatın bozunması ve “sabit hava”nın, yani karbondioksitin oluşması üzerine dikkate değer bir doktora tezi üretti. Bu tez, kimyasal araştırma ve keşif alanında zincirleme bir tepkimenin kıvılcımını çaktı. İngiltere’de münzevi deha Henry Cavendish hidrojen gazını yalıttı ve suyun iki parça hidrojen ile bir parça oksijenden oluştuğunu kanıtladı. Muhallif papaz Joseph Priestley oksijeni ve başka birçok yeni gazı yalıttı. Felemenkli Jan Ingenhousz, Priestley’in bıraktığı yerden devam etti ve yeşil bitkilerin gün ışığında oksijen, karanlıkta karbondioksit saldıklarını gösterdi. Bu arada Fransa’da Antoine Lavoisier karbon, kükürt ve fosfor dahil, birçok elementin oksijenle birleşerek yandığını ve bugün bizim oksit dediğimiz şeyi oluşturduğunu gösterip, yanıcı malzemelerin yanmalarını sağlayan ve filojiston denilen bir madde içerdiğine ilişkin teoriyi çürüttü. (Ne yazık ki, Fransız devrimciler Lavoisier’i giyotine gönderecekti.)

1793’te Fransız kimyacı Joseph Proust, kimyasal elementlerin neredeyse her zaman belirli oranlarda birleştiklerini keşfetti. Bu, basit bileşiklerin formüllerini çıkarma yönünde yaşamsal bir adımdı.

Yer Bilimleri

Terazinin diğer ucuna Yer süreçlerine ilişkin bilgi büyük ilerlemeler kaydediyordu. Amerika’da Benjamin Franklin, şimşeğin bir elektrik biçimi olduğunu kanıtlamak için tehlikeli bir deney yapmanın dışında, Gulf Stream araştırmalarıyla büyük ölçekli okyanus akıntılarının varlığını kanıtladı. İngiliz hukukçu ve amatör meteorolog George Hadley, ticaret rüzgarlarını Yer’in dönüşüyle ilişki içinde açıklayan kısa bir kitapçık yayımlarken; Newton’ın bir düşüncesine sarılan Nevil Maskelyne, bir İskoç dağının kütleçekimini ölçmek için ağır hava koşullarında birkaç ay kamp kurdu. Bunu yaparken Yer’in yoğunluğunu ortaya çıkardı. James Hutton İskoçya’da çiftlik miras aldıktan sonra jeolojiyle ilgilenmeye başladı ve Yer’in daha önce sanılandan daha yaşlı olduğunu ortaya çıkardı.

1200 base image 4.1424268652

Yaşamı Anlamak

Bilim insanları Yer’in aşırı yaşını öğrenince, yaşamın nasıl başladığına ve evrildiğine ilişkin yeni düşünceler ortaya çıkmaya başladı. Zamanının ötesinde Fransız yazar, doğa bilimci ve matematikçi Georges-Louis Leclerc, diğer adıyla Comte de Buffon, modern evrim teorisi yönünde ilk adımları attı. Alman teolog Christian Sprengel ömrünün çoğunu bitkilerle böceklerin etkileşimini inceleyerek geçirdi ve erdişi çiçeklerin erkek ve dişi organları farklı zamanlarda çıkardıklarını, dolayısıyla kendi kendilerini döllemediklerini açıkladı. İngiliz rahip Thomas Robert Malthus dikkatini demografiye verdi ve nüfus arttıkça felaket öngören An Essay on the Principle of Population’ı (Nüfus Artışı Hakkında Araştırma) yazdı. Malthus’un kötümserliğinin yersiz olduğu (şimdiye kadar) anlaşıldı; ama kontrol edilmezse nüfus artışının kaynakları aşacağı düşüncesi, daha sonra Charles Darwin’i etkileyecekti.

DigiRev

Yüzyılın sonunda İtalyan fizikçi Alessandro Volta, izleyen on yıllarda ilerlemeleri hızlandıracak elektrik bataryasını icat ederek yeni bir dünyanın kapısını açtı. 18. yüzyıl boyunca öyle bir ilerleme olmuştu ki, İngiliz filozof William Whewell, filozoftan farklı yeni bir mesleğin yaratılmasına önerdi: “Genel olarak bilimle uğraşan birini tarif etmek için bir ada çok ihtiyacımız var. Ben bilim insanı deme eğilimindeyim.”

Genişleyen Ufuklar 1700 – 1800

1727 – İngiliz din adamı Stephen Hales kök basıncını gösteren Vegetable Staticks‘i yayımlar.

1735 – İsveçli botanikçi Carl Linnaeus flora ve fauna sınıflandırmasının başlangıcı olan Systema Naturae‘yi yayımlar.

1735 – George Hadley on yıllarca meçhul kalan kısa bir kitapçıkta ticaret rüzgarlarının davranışlarını açıklar.

1738 – Daniel Bernoulli gazların kinetik teorisinin temelini atan Hydrodynamica‘yı yayımlar.

1749 – Georges-Louis Leclerc, Histoire Naturelle‘nin ilk cildini yayımlar.

1754 – Joseph Black’in karbonatlar üzerine doktora tezi, nicel kimyada öncü eserdir.

1766 – Henry Cavendish, çinkoyu asitle tepkimeye sokarak hidrojen ya da yanar hava yapar.

1770 – Amerikalı diplomat ve bilim insanı Benjamin Franklin, Gulf Stream akıntısının bir haritasını yayımlar.

1774 – Joseph Priestley bir büyüteç ve Güneş ışığı kullanıp cıva oksidi ısıtarak oksijen meydana getirir, buna filojistonsuz hava der.

1774 – Antoine Lavoisier, Priestley’den tekniği öğrendikten sonra, aynı gazı meydana getirir ve adına oksijen der.

1774 – Nevil Maskelyne, bir dağın kütleçekimini ölçerek Yer’in yoğunluğunu hesaplar.

1779 – Jan Ingenhousz yeşil bitkilerin gündüz dışarıya oksijen verdiklerini keşfeder; bu, fotosentezdir.

1788 – James Hutton Yer’in yaşıyla ilgili teorisini yayımlar.

1793 – Christian Sprengel, tozlaşma üzerine kitabında bitki cinselliğini tasvir eder.

1798 – Thomas Robert Malthus insan nüfusu üzerine, daha sonra Charles Darwin ve Alfred Russel Wallace’ı etkileyen ilk denemesini çıkarır.

1799 – Alessandro Volta elektrik bataryasını icat eder.